Supplementary Materials for

Precision Control of Flow Rate in Microfluidic Channels Using Photoresponsive Soft Polymer Actuators

Colm Delaney^a, Peter McCluskey^a, Simon Coleman^a, Jeff Whyte^b, Nigel Kent^{a,b} and Dermot Diamond^{*a}

^{a.} Insight Centre for Data Analytics, National Centre for Sensor research, Dublin City University, Dublin 9, Ireland.

^{b.} School of Mechanical and Design Engineering, Dublin Institute of Technology, Bolton Street, Dublin, Ireland.

*To whom correspondence should be addressed. Tel.: + 353 1 700 5404; E-mail: dermot.diamond@dcu.ie

Table of Contents:

- 1. Figure SI 1: GUI Developed to implement the PID control algorithm
- 2. Figure SI 2: Flow behaviour previously produced by Coleman et al.
- 3. Table SI 1: Summary statistics for data from Figure 4.
- 4. Table SI 2: Summary statistical data from Figure 5.
- 5. Table SI 3: Summary statistics for data presented in Figure 7.
- 6. References

Text	
	1
LED	
1	~ 20
Increment % Flow	Rate I Time
10 1	10
LED Endt % Kp	Error
100 1	1
Ki	LED Out
	LED I Increment % Flow I 10 1 LED Endt % Kp 100 Ki

Figure SI 1: GUI Developed to implement the PID control algorithm

Through the GUI, the user can;

- Set the desired flow rate profile (constant or switched between values at specific times);
- Set system limits (e.g. maximum LED power allowed);
- Set values for proportional and integral control constants, K_P and K_I .
- Set the time over which the error between the set and the measured flow rate is integrated.

Figure SI 2: A) Flow behaviour presented by Coleman et al.¹, reproduced with the permission of the authors, achieved by three repeats of: (i) 60s LED on, (ii) 180s pulsed LED (1s on, 2s off), and (iii)180s LED off. Classic overshoot behaviour of the flow rate (highlighted) is evident followed by establishment of a steady-state flow at ca. 4.0 μ L/min; B) Flow behaviour produced by three repeats of (i) 30s LED on, 180s pulsed LED (1s on, 2s off), (iii) 30s LED on, (iv) 180s pulsed LED (1s on, 2s off), 180s LED off. Once again overshoot occurs for every case of change in flow rate. The shorted LED initial 'on' time causes the flow to begin to settle at a lower flow rate (ca. 2.0 μ L/min). However, the pulsed LED causes the flow rate subsequently to increase slowly as the steady state under these conditions is closer to 4.0 μ L/min. The second part of the flow pattern is very similar to (A).

Table SI 1: Summary statistics for data from Figure 4; units for columns (*) µL/min

	mean		Mean	ABS	
Peak	(n=30)*	SD*	Error*	Error*	
1	9.997	0.044	-0.0031	0.0031	
2	10.002	0.045	0.0015	0.0015	
3	9.993	0.020	-0.0066	0.0066	
4	9.999	0.022	-0.0009	0.0009	
5	10.009	0.030	0.0090	0.0090	
6	10.012	0.049	0.0117	0.0117	
7	9.998	0.014	-0.0017	0.0017	
8	9.994	0.022	-0.0056	0.0056	
9	10.018	0.049	0.0180	0.0180	
10	10.006	0.028	0.0055	0.0055	
average	10.003	0.032	0.0028	0.0064	

Mean = Average of 30 points on the steady state just behind the initial small overshoot. SD = Standard Deviation of the same 30 points.

Mean Error = Mean flow rate – set flow rate (10 μ L/min)

ABS Error = $|(FR_{mean} - FR_{SP})|$ (modulus of the error)

Table SI 2:	Summai	ry statistical	data fror	m <i>Figure 5.</i>	Average	es and	standard	deviations	s are
calculated	from 100	consecutive	points r	andomly se	elected o	n the	steady-sta	ite regions	s for
each flow r	ate.								

Set Flow rate (µL/min)	5.0	10.0	15.0	10.0	5.0	mean
Average Flow rate (µL/min)	5.034	10.141	15.123	10.124	5.036	N/A
Standard Deviation (µL/min)	0.016	0.053	0.051	0.049	0.018	0.037
%RSD	0.327	0.525	0.334	0.481	0.356	0.405
Mean Error (set µL/min)	0.034	0.140	0.123	0.123	0.036	0.091
Mean Error (average µL/min)	0.013	0.042	0.040	0.038	0.014	0.029
%RE (vs. set flow rate)	0.679	1.407	0.820	1.235	0.721	0.972
%RE (vs. average flow rate)	0.257	0.412	0.266	0.372	0.276	0.316
Average Power (mW)	20.58	82.32	185.11	82.35	20.60	N/A

Set Flow	Average	SD	%RSD	%RE	MOD error	Power
Rate	Flow Rate					
5.0	5.039	0.018	0.351	0.772	0.039	20.598
10.0	10.050	0.048	0.476	0.502	0.050	82.280
15.0	15.048	0.047	0.315	0.317	0.048	185.260
10.0	10.064	0.039	0.391	0.638	0.064	82.197
5.0	5.032	0.018	0.366	0.636	0.032	20.650
10.0	10.045	0.029	0.290	0.449	0.045	82.316
15.0	15.030	0.037	0.246	0.200	0.030	185.506
10.0	10.043	0.034	0.343	0.428	0.043	82.474
5.0	5.021	0.020	0.390	0.425	0.021	20.598
10.0	10.023	0.029	0.287	0.226	0.023	82.602
15.0	14.996	0.034	0.226	-0.027	0.004	184.974
10.0	10.033	0.026	0.259	0.327	0.033	82.226
5.0	5.019	0.016	0.321	0.388	0.019	20.573
10.0	10.019	0.026	0.260	0.187	0.019	82.189
15.0	14.974	0.026	0.173	-0.176	0.026	185.053
10.0	10.011	0.021	0.213	0.105	0.011	82.384
	Average =	0.0292	0.3068		0.0316	

Table SI 3: Summary statistics for data presented in *Figure 7*.

Flow rate units are μ L/min; Power Units are mW. Averages and standard deviations are for n=100 consecutive points selected randomly from each steady-state flow-rate region.

References

 Coleman, S. *et al.* Tuning Microfluidic Flow by Pulsed Light Oscillating Spiropyran-based Polymer Hydrogel Valves. *Sensors and Actuators B: Chemical* doi:http://dx.doi.org/10.1016/j.snb.2017.01.112