Supplementary information

AC Electric Field Controlled Non-Newtonian Filament Thinning and Droplet Formations at Microscale

Y. Huang¹, Y. L. Wang¹, T. N. Wong^{1*}

¹School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang, Avenue, Singapore 639798, *Corresponding author. E-mail: <u>mtnwong@ntu.edu.sg</u>, <u>hu0010yi@e.ntu.edu.sg</u>

Contents

1.	Methods of applying the AC electric field	2
2.	Material properties:	3
,	Viscosity of the fluids	3
	Interfacial tension between the fluids	3
	Dielectric constant of the fluids (relative electric permittivity)	3
3.	Calculation of the relaxation time λ for the polymer solution	4
4.	Merging of droplets under AC electric field in jetting regime	5
5.	Plots of droplet diameter as a function of applied voltage at various frequencies	6
6.	Plots of droplet diameter as a function of frequency at various applied voltages	11
7.	Caption list of the uploaded videos	14
Re	ferences	14

1. Methods of applying the AC electric field

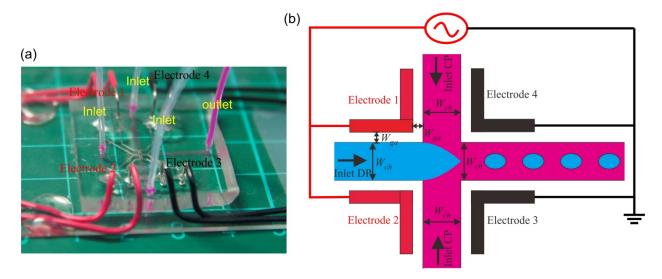


Figure S-1 Methods of applying AC electric fields through the microchannel. (a) The photo of the microchannel, (b) schematics of the electric circuit of implementing the AC electric field.

The methods of applying the AC electric field are shown in Figure S-1. As indicated both in (a) and (b), there are four electrodes all of which are connected with the electric wires. Among them, electrode 1 and 2 are connected to the high voltage amplifier where the high voltages with sine wave patterns are generated while the other two are grounded as indicated in (b).

2. Material properties:

Viscosity of the fluids

Fluids	Viscosity (mPa·s)
Mineral oil with 5% span 80	30.0
63% w.t. Glycerol in DI water	10.5
PEO M_w =4M, 0.5% w.t. aqueous solution	Shown in main text, Figure 3
PEO M_w =4M, 0.5% w.t. aqueous solution	Shown in main text, Figure 3

Table S-1 Viscosity of the fluids

The viscosities are measured by the TA Instruments Discovery Hybrid Rheometer (DHR-2).

Interfacial tension between the fluids

Fluidic systems	Interfacial tension (mN/m)
PEO M_w =4M, 0.5% w.t. aqueous solution /	18.0
Mineral oil with 5% span 80	
63% w.t. Glycerol in DI water /	4.9
Mineral oil with 5% span 80	

The interfacial tension are measured by the tensiometer, model: FTA 200, using pendent droplet method.

Dielectric constant of the fluids (relative electric permittivity)

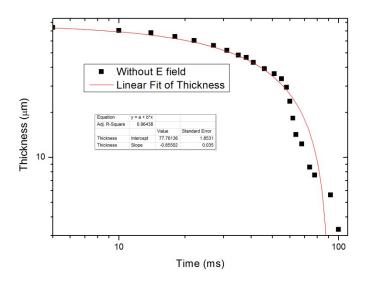
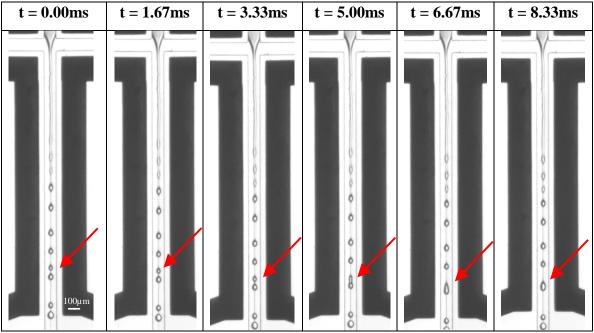
Fluids	Relative permittivity ε_r			
Mineral oil with 5% span 80	2.8			
63% w.t. Glycerol in DI water	46.3			
PEO M _w =4M, 0.5% w.t. aqueous solution	891.0			

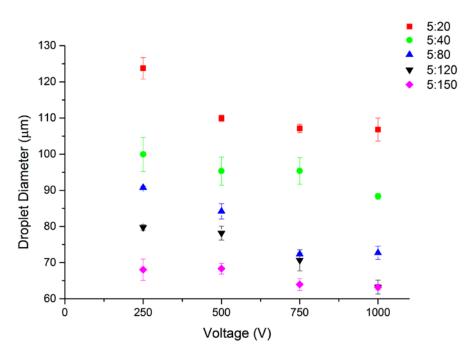
Table S-3 dielectric constant of the fluids

The dielectric constants of the fluids are measured by filling the fluids into a self-fabricated capacitor of cylindrical shape. The capacitances with and without the fluids are measured by a precision LCR meter (Keysight E4980AL). The relative permittivity can then be calculated by the formula of $C = \varepsilon_0 \varepsilon_r A / d$.

3. Calculation of the relaxation time λ for the polymer solution

We utilize the approach indicated in Eq. (8), McKinley's review ¹ which uses the filament thinning process and the formula $\dot{\epsilon}_{mid} = -\frac{2}{R_{mid}} \frac{dR_{mid}}{dt} = \frac{2}{3\lambda}$ to estimate the relaxation time. From the filament thinning process, we can calculate the $\dot{\epsilon}_{mid} \approx -\frac{2}{60} \cdot -0.855 \times 10^3 = \frac{2}{3\lambda}$, therefore $\lambda \approx 23.4$ ms. The slope of filament thinning is obtained by the linear curve fitting of the measured data as shown in the figure below.


Figure S-2 Linear fitting for the slope of the filament thinning.

4. Merging of droplets under AC electric field in jetting regime

Figure S-3 Merging of droplets in jetting regime. Q_{DP} : Q_{CP} =20:160 µl/hr, applied electric field: 750 V, 5KHz.

5. Plots of droplet diameter as a function of applied voltage at various

frequencies

Figure S-4: Droplet diameter as a function of applied voltage at 500Hz where Q_{PEO} is 5μ l/hr

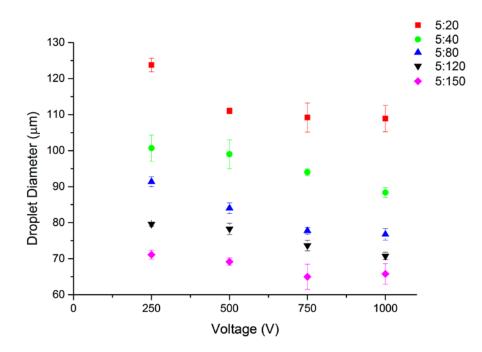


Figure S-5: Droplet diameter as a function of applied voltage at 1000Hz where Q_{PEO} is $5\mu\text{l/hr}$

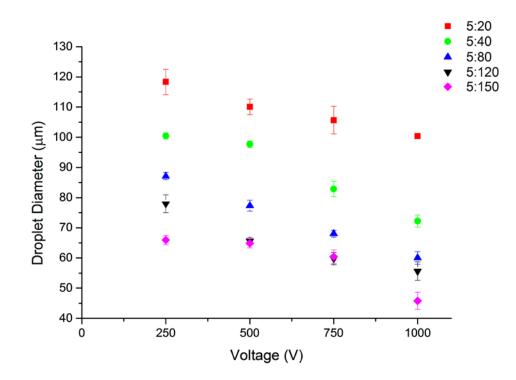


Figure S-6: Droplet diameter as a function of applied voltage at 5000Hz where Q_{PEO} is 5μ l/hr

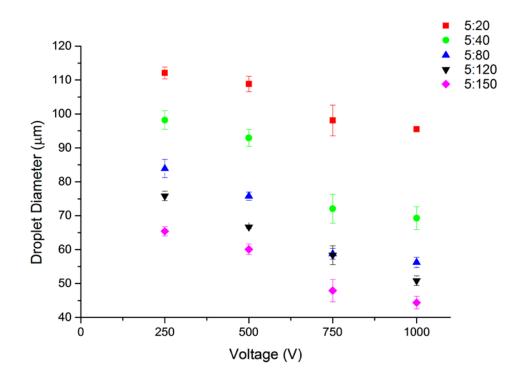


Figure S-7: Droplet diameter as a function of applied voltage at 7000Hz where Q_{PEO} is $5\mu l/hr$

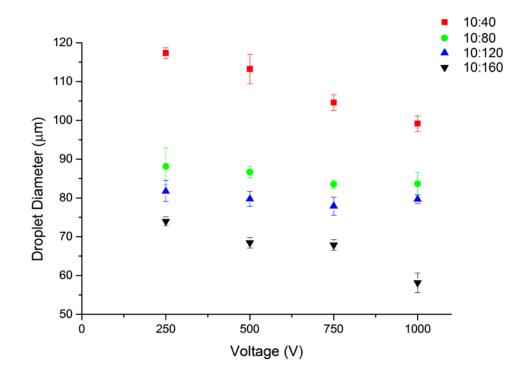


Figure S-8: Droplet diameter as a function of applied voltage at 500Hz where Q_{PEO} is 10μ l/hr

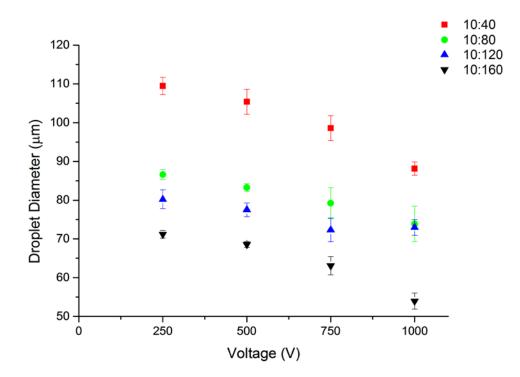


Figure S-9: Droplet diameter as a function of applied voltage at 2000Hz where Q_{PEO} is $10 \mu l/hr$

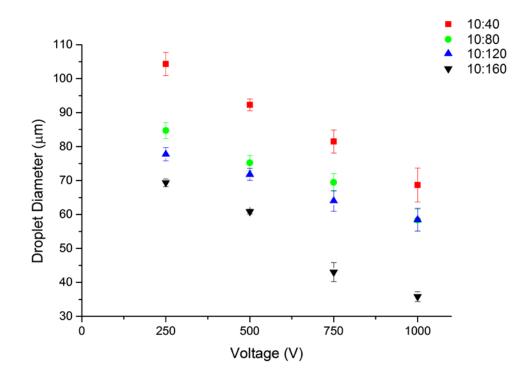


Figure S-10: Droplet diameter as a function of applied voltage at 7000Hz where Q_{PEO} is $10 \mu l/hr$

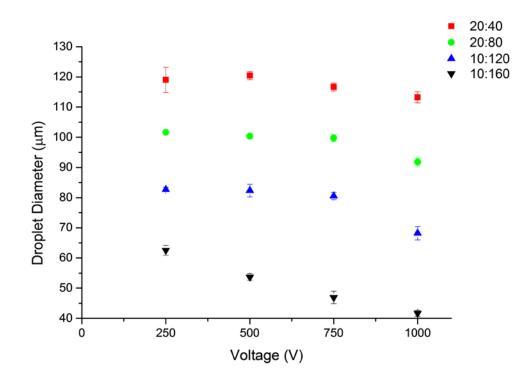


Figure S-11: Droplet diameter as a function of applied voltage at 1000Hz where Q_{PEO} is $20 \mu l/hr$

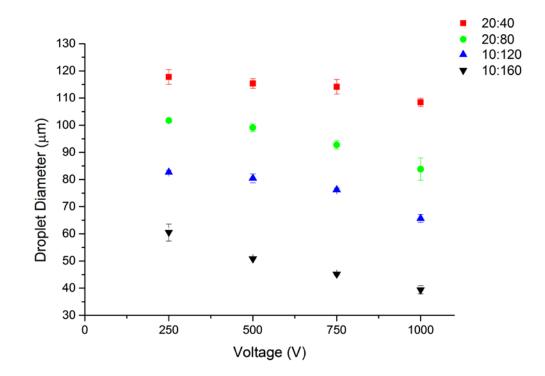


Figure S-12: Droplet diameter as a function of applied voltage at 2000Hz where Q_{PEO} is $20 \mu l/hr$

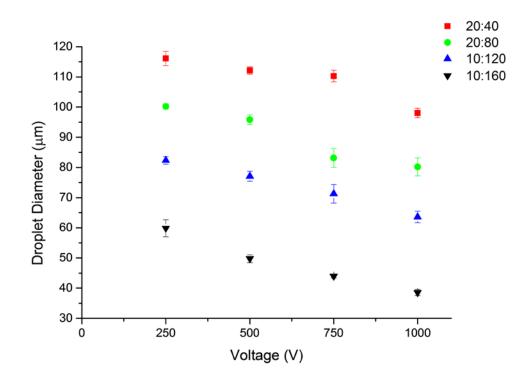


Figure S-13: Droplet diameter as a function of applied voltage at 5000Hz where Q_{PEO} is 20μ l/hr

6. Plots of droplet diameter as a function of frequency at various applied voltages

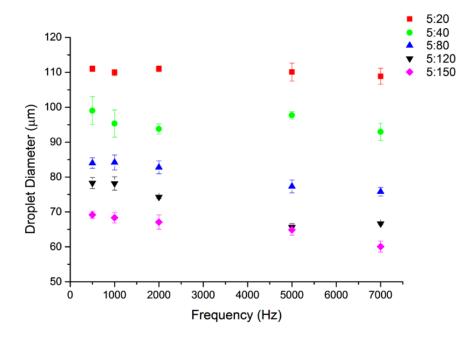


Figure S-14: Droplet diameter as a function of frequency at 500V where Q_{PEO} is 5μ l/hr

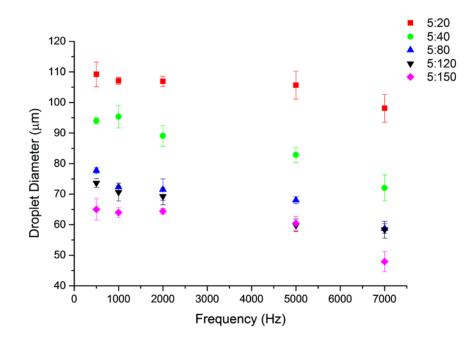


Figure S-15: Droplet diameter as a function of frequency at 750V where Q_{PEO} is $5\mu l/hr$

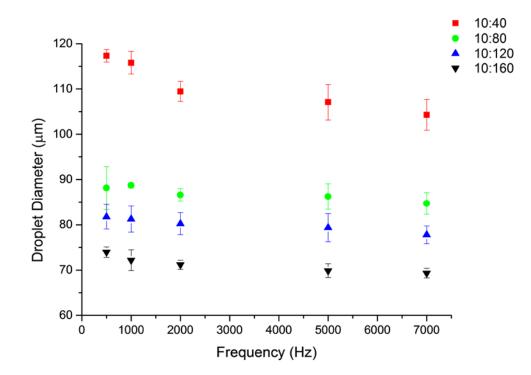


Figure S-16: Droplet diameter as a function of frequency at 250V where Q_{PEO} is 10μ l/hr

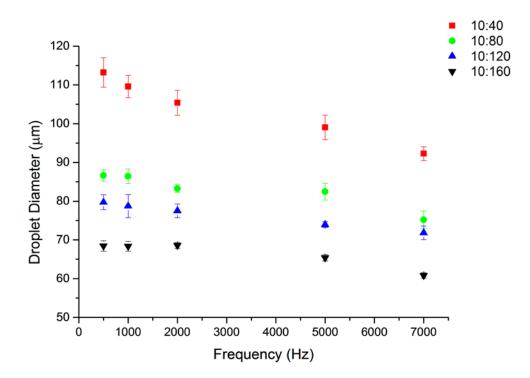


Figure S-17: Droplet diameter as a function of frequency at 500V where Q_{PEO} is 10μ l/hr

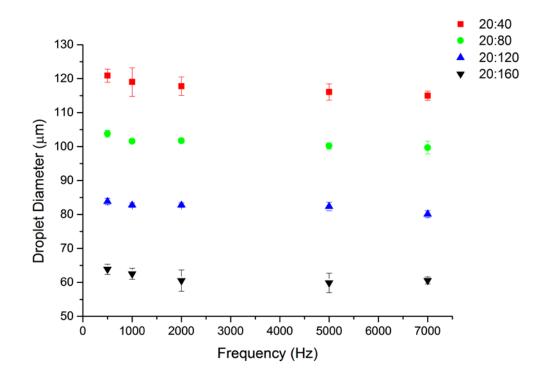


Figure S-18: Droplet diameter as a function of frequency at 250V where Q_{PEO} is 20μ l/hr

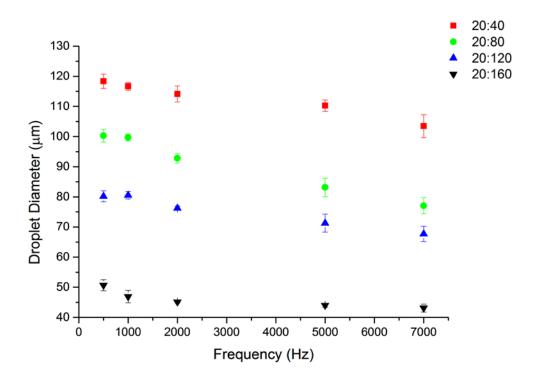


Figure S-19: Droplet diameter as a function of frequency at 750V where Q_{PEO} is 20µl/hr

7. Caption list of the uploaded videos

	Tuble 5 + capiton list for the aploaded videos	
Video Name	Caption	Capture speed (fps)
S 1-1 without e field	Non-Newtonian droplet breakup processes <i>without electric</i> field, Flow rates are Q_{DP} : Q_{CP} =10:40 µL/hr	1000
S 1-2 500 V 2K Hz	Non-Newtonian droplet breakup processes under AC electric field of 500 V 2K Hz, Flow rates are Q_{DP} : Q_{CP} =10:40 µL/hr	1000
S 1-3 750 V 7K Hz	Non-Newtonian droplet breakup processes under AC electric field of 750 V 7K Hz, Flow rates are Q_{DP} : Q_{CP} =10:40 µL/hr	1000
S 1-4 1 KV 7 K Hz	Non-Newtonian droplet breakup processes under AC electric field of <i>IK V 7K</i> Hz, Flow rates are Q_{DP} : Q_{CP} =10:40 µL/hr	1000
S 2-1 squeezing 750V 500Hz	Non-Newtonian droplet formation in <i>squeezing</i> regime, under the AC electric field of 750V 500 Hz, Flow rates are $Q_{DP}: Q_{CP} = 10:40 \mu\text{L/hr}$	1000
S 2-2 dripping 750V 500Hz	Non-Newtonian droplet formation in <i>dripping</i> regime, under the AC electric field of 750V 500 Hz, Flow rates are $Q_{DP}: Q_{CP} = 10:160 \mu$ L/hr	1000
S 2-3 jetting 750V 7K Hz	Non-Newtonian droplet formation in <i>jetting</i> regime, under the AC electric field of 750V 7K Hz, Flow rates are Q_{DP} : $Q_{CP} = 10:160 \mu$ L/hr	1000
S 3-1 fluorescent no field	Fluorescent capturing of the non-Newtonian droplet formation, <i>without electric field</i> , Flow rates are Q_{DP} : Q_{CP} =10:40 µL/hr	1000
S 3-2 fluorescent 1KV 1KHz	Fluorescent capturing of the non-Newtonian droplet formation, with the AC electric field of 1KV 1K Hz , Flow rates are Q_{DP} : Q_{CP} =10:40 µL/hr	1000
S 4-1 non-Newtonian 1kv 4kHz	Droplet formation tuned by AC electric field 1K V 4K Hz: the <i>non-Newtonian fluid</i>	1000
S 4-2 Newtonian 1kv 4kHz	Droplet formation tuned by AC electric field 1K V 4K Hz: the <i>Newtonian fluid</i>	1000

Table S-4 Caption list for the uploaded videos

References

1. G. H. McKinley, *Rheology Reviews*, 2005, **3**, 48.