Electronic Supplementary Information for:

Multicomponent diffusion coefficients from microfluidics using Raman microspectroscopy

Christine Peters, Ludger Wolff, Sandra Haase, Julia Thien, Thorsten Brands, Hans-Jürgen Koß and André Bardow

S1 Pure component data

Table S1 Used chemicals with supplier and purity

	supplier	description	purity in %
cyclohexane	VWR	Spectronorm	99.7
toluene	VWR	Spectronorm	99.8
methanol	VWR	Spectronorm	99.9
acetone	Merck Millipore	Uvasol	99.9
1-propanol	Merck	LiChrosolv	99.8
1-chlorobutane	Merck	LiChrosolv	99.8
heptane	Bernd Kraft	p.a.	99

Table S2 Molar volumes of pure components

	V_i^0 in m ³ mol ⁻¹	reference
cylohexane	108.8×10^{-6}	1
toluene	106.9×10^{-6}	2
1-propanol	75.17×10^{-6}	3
1-chlorobutane	105.2×10^{-6}	4
heptane	147.4×10^{-6}	5

S2 Reparameterization for the estimation procedure of ternary diffusion coefficients

For ternary mixtures, the following constraints impose positive definiteness of the diffusion coefficient \boldsymbol{D}^{V} :⁶

$$D_{11} + D_{22} > 0 \tag{S1}$$

$$D_{11}D_{22} - D_{12}D_{21} > 0 \tag{S2}$$

$$(D_{11} - D_{22})^2 + 4D_{12}D_{21} > 0$$
(S3)

In practice, many solvers employ infeasible path strategies and allow violations of constraints during the iterations. We employed the reparameterization proposed by Bardow *et al.*⁷

$$\theta_1 = D_1^{\dagger}, \ \theta_2 = D_2^{\dagger}, \ \theta_3 = D_{11} - D_{22}, \ \text{and} \ \theta_4 = D_{12}.$$
 (S4)

The inverse transformation is performed according to

$$D_{11} = \frac{\theta_1 + \theta_2 + \theta_3}{2}, D_{22} = \frac{\theta_1 + \theta_2 - \theta_3}{2}, D_{21} = \frac{(\theta_1 - \theta_2)^2 - \theta_3^2}{4\theta_4}, \text{ and } D_{12} = \theta_4.$$
(S5)

With simple constraints on θ_1 and θ_2 , the constraints (S1) - (S3) are trivially satisfied.⁷ In practical applications, division by the unknown parameter θ_4 to compute D_{21} does not lead to numerical difficulties in our experience.

S3 Cyclohexane + toluene

The influence of the temperature inaccuracy on the diffusion coefficient is expected to be in the same order of magnitude as the standard deviation $\sigma(D)$ based on the correlation

$$D(T) = D(T_0) \frac{T}{T_0} \frac{\eta_{AB}(x, T_o)}{\eta_{AB}(x, T)}$$
(S6)

between the diffusion coefficient *D*, absolute temperature *T* and viscosity η .⁸ The index 0 indicates the reference conditions. For a temperature accuracy of ±0.5 K, a relative error of the diffusion coefficient of 0.8 % is expected according to the temperature correlation (S6) and the viscosities of cyclohexane + toluene listed in Table S3.

Table S3 Expected influence of temperature on the diffusion coefficient and the viscosity of cyclohexane + toluene at $x_{cyclohexane} = 0.6$. Viscosities were interpolated based on the data published by Silva *et al.*⁹ The diffusion coefficient at 25 °C was published by Sanni *et al.*¹⁰

comment on D	D	η	Т
	in $10^{-9} \text{ m}^2 \text{ s}^{-1}$	in mPas	in °C
eq. S6	1.753	0.635	24.5
Reference ¹⁰	1.767	0.631	25
eq. S6	1.781	0.627	25.5

S4 1-Propanol + 1-chlorobutane + heptane

	series A		series B	
\bar{x}	x _{left}	xright	x_{left}	xright
33.3	35.8	30.8	35.8	30.8
33.3	35.8	30.8	30.8	35.8
33.3	28.4	38.4	33.4	33.4
	\bar{x} 33.3 33.3 33.3 33.3	$ \begin{array}{ccc} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S4 Composition of the experiments with 1-propanol + 1-chlorobutane + heptane in mol%

Table S5 Measured diffusion coefficient for 1-propanol + 1-chlorobutane + heptane at $x_{1-propanol} = x_{1-chlorobutane} = 33.3 \text{ mol }\%$ and 25 °C by microfluidic experiment in this work with standard deviation $\sigma(\boldsymbol{D}^V)$ from repeated experiments in comparison to Käshammer *et al.*¹¹. The quality of fit for the diffusion coefficient is given as RMSE_{fit}.

	D ₁₁	D ₁₂	D ₂₁	D ₂₂	RMSE _{fit}
		in $1 \times 10^{-9} \text{ m}^2 \text{ s}^{-1}$			in mol%
$n_{\rm exp} = 1^{\rm a}$	0.746 ± 0.202	-0.552 ± 0.474	0.423 ± 0.120	2.571 ± 0.263	0.29
$n_{\rm exp} = 2^{\rm b}$	0.998 ± 0.025	-0.279 ± 0.044	0.311 ± 0.027	2.521 ± 0.050	0.29
$n_{\rm exp} = 9^{\rm c}$	1.017	-0.236	0.310	2.516	0.29
literature	1.033 ± 0.016	-0.174 ± 0.025	0.255 ± 0.012	2.463 ± 0.017	

^a estimated from nine separate experiments

^b estimated from all combinations of two experiments, one from series A and series B each ^c estimated from all experiments simultaneously, four from series A and five from series B each. No standard deviations from repeated experiments are available, but standard deviations are expected to be less than for $n_{exp} = 2$ as more data was used.

References

- [1] S. A. Beg, N. M. Tukur, D. K. Al-Harbi and E. Z. Hamad, J. Chem. Eng. Data, 1993, 38, 461–464.
- [2] M. Chorążewski, J.-P. E. Grolier and S. L. Randzio, J. Chem. Eng. Data, 2010, 55, 5489–5496.
- [3] E. Vercher, A. V. Orchillés, P. J. Miguel and A. Martínez-Andreu, J. Chem. Eng. Data, 2007, 52, 1468–1482.
- [4] M. F. Bolotnikov, Y. A. Neruchev and O. S. Ryshkova, J. Chem. Eng. Data, 2007, 52, 2514–2516.
- [5] D. C. Landaverde-Cortes, A. Estrada-Baltazar, G. A. Iglesias-Silva and K. R. Hall, J. Chem. Eng. Data, 2007, 52, 1226–1232.
- [6] R. Taylor and R. Krishna, Multicomponent Mass Transfer, John Wiley & Sons, 1993.
- [7] A. Bardow, V. Göke, H.-J. Koß and W. Marquardt, AIChE J., 2006, 52, 4004–4015.
- [8] C. Blesinger, P. Beumers, F. Buttler, C. Pauls and A. Bardow, J. Solution Chem., 2014, 43, 144–157.
- [9] A. A. Silva, R. A. Reis and M. L. L. Paredes, J. Chem. Eng. Data, 2009, 54, 2067–2072.
- [10] S. A. Sanni, C. J. D. Fell and H. P. Hutchison, J. Chem. Eng. Data, 1971, 16, 424-427.
- [11] S. Käshammer, H. Weingärtner and H. G. Hertz, Z. Phys. Chem., 1994, 187, 233-255.