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Fig. S1 Calculated Mean amplitude of vibration of gold nanoparticles in trapped 

positions. 



29

Supplementary Table S1 | Trapping positions and oscillating movement of the 

nanoparticles

Size Trapping 
position Stiffness 

Measure
d  D

Calculated 
MSD

(nm) (µm) (N s−1) (μm) (μm)
60 32 −2.45 × 10−10 7.1 7.31
70 74 −8.42 × 10−10 5.8 3.93
80 104 −1.09 × 10−9 3.7 3.44
90 112 −1.32 × 10−9 5.3 3.13
100 132 −1.66 × 10−9 6.3 2.74
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Supplementary Note 1 | Dynamic trapping of the nanoparticles in a light field

A particle moving in a force field satisfies

                                                    (S1) 6 f opt Brownianmx r v x F F   && &

where , r, x ,  and  are the mass, size, displacement, velocity and acceleration of the m x& x&&

particle, respectively; and are the viscosity and velocity of the fluid, respectively; and  fv

 and FBrownian are the optical and Brownian forces on the particle, respectively. optF

Let , tx C Be  &

then 

                                                                 (S2)tx B e   &&

Next, substituting these into equation (S1), we obtain 

                                 (S3)6 6 6t t
opt fm Be rC rBe F rv         

Equation (S3) holds because is constant over a very short time. When ,  we obtain optF t

                                                        (S4)6 6opt frC F rv  

Therefore,

                                                        (S5)
6

6
opt f

end

F rv
C v

r





 

By substituting equation (S5) into equation (S4), we obtain

                                                      (S6)6 0t tm Be rBe     
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 . 6 /r m 

Meanwhile, when ,0t 

                                     (S7)                                   0( 0) 6 6f optmx t rv F rv    &&

From equation (S2), we obtain that

                                                        (S8)0( 0)x t B e  &&

By substituting equation (S8) into equation (S7), we obtain

                                             (S9)06 6f optm B rv F rv     

Therefore,

                                           (S10)
 0

0

6 f opt
end

r v v F
B v v

m



 

  

We assume the particle has a constant velocity when , that is, / 0.1%r B 

                                (S11)
6 6

0.001 0.001
r rt t

m m
endC Be v B Be B

   
 

    

If m, r and η are given, the time from the initial velocity to the final velocity can be 

determined. For a 60-nm gold nanoparticle, given r = 30 nm, m = 2.185×10−18 kg and η = 

0.001, the calculated time for the particle to reach its final velocity is 26.69 ns. Therefore, 

given an initial velocity small enough to satisfy the condition that Fopt is constant, the 

particle requires roughly 27 ns to reach the final velocity resulting from the combined effect 

of the optical field and the flow. The nanoparticle velocities are limited by the strong 

damping of the liquid flow exerted by the optical field. As a result, every location in the 
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microchannel has a specific velocity for a given nanoparticle. In our experiments, the 

nanoparticles decelerated as they approached their positions of force equilibrium, and their 

velocities fell to zero upon reaching the equilibrium positions. 
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Supplementary Note 2 | Calculation of the optical forces with different stress tensors

Several stress tensors, including those of Maxwell, Einstein–Laub, Minkowski and 

Abraham, are available for the calculation of the optical forces in a liquid [43−46]. They 

give identical results for particles embedded in air, but differ for particles embedded in a 

medium. The Maxwell stress tensor is expressed as [1]

                                           (S12) 2 2
0 0 0 0

1
2ij i j i j ijT E E H H E H       

The Minkowski stress tensor is expressed as [2]

                                               (S13) 1
2

E D H Bij i j i j ijT E D H B      

The Abraham stress tensor is expressed as [3]

                                (S14)   1 1
2 2

E D H Bij i j j i i j j i ijT E D E D H B H B        

The Einstein–Laub stress tensor is expressed as [4]

                                             (S15) 2 2
0 0

1
2ij i j i j ijT E D H B E H     

Note that the Minkowski and Abraham stress tensors are identical in an isotropic medium. 

Thus, we only calculate the Minkowski stress tensor in this paper. The force calculated 

with the Minkooowski stress tensor is biggest on each particle, while the smallest using 

Maxwell stress tensors. We calculated the trapping positions of the different-sized 

nanoparticles using the forces given by each of those stress tensors, and compared them 

with the measured positions. 
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