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Figure S1. Simulation of the scattered field of the incident Gaussian beam

(a) The simulation geometry. nwater=1.33. nmirror=1.45. A Gaussian beam along y-axis is set as the 
background field with an FWHM of 60 m and the focal plane at the top interface between the 
mirror and water. (b) The distribution of the scattered field when there is no microwell structure 
(the SU-8 domain is set to be the same as the water domain, nSU-8=1.33). (c) The distribution of 
the scattered field when the microwell is present (nSU-8=1.60). The integration of the scattered field 
energy density over the water domain is 2.45e-19 and 2.60e-19 J/m3

 without and with the SU-8 
microwell structure, respectively. The discrepancy is less than 10%, thus we conclude that the 
microwell structure does not have any significant effect on the excitation profile.
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Figure S2. Lasing stability of a cell captured in a microwell
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Lasing stability of a cell captured in a microwell. The cell was continuously excited for 30 seconds 
with a pump intensity of 100 J/mm2 per pulse. The cell underwent up to 600 excitation pulses 
during the test, about twice the number of pulses that a cell might receive when it was scanned for 
6 times in our work. As shown in Figure S2, no wavelength shift is observed in those lasing peaks.
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The thermal effect on the microwell-integrated cell lasing array
Given that there is environmental temperature fluctuation during the experiment, the resulting 

lasing wavelength shift is examined as follows. The dependence of the lasing wavelength  on 𝜆

temperature can be written as , where neff is the effective refractive 
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index,  the thermal-optic coefficient, L the cavity length and  the linear thermal expansion 
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coefficient. A cell laser cavity consists of mainly water, DNAs and proteins, with an effective 
thermal-optic coefficient estimated to be -1~4×10-4/℃.1-3 Since the SU-8 layer acts as the spacer 
for the laser cavity, the linear thermal expansion coefficient of SU-8 (52×10-6/℃, MicroChem 

Corp.) is used to estimate . Thus, for a temperature drift of 1℃,  and the 
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corresponding lasing wavelength shift  around 540 nm is about 0.2 nm.∆𝜆
We also examine the thermal effect of the pump laser. At 120 J/mm2 pump fluency, the total 

energy impinged on an area of 2×10-4 mm2 (the area of a cell) is 2.4×10-8 J per excitation pulse. 
Typically, less than 10% of the total energy can be absorbed (absorption cross section of dyes at 

excitation wavelength , dye concentration C ~1 mM, gain medium length L~ 𝜎𝑎~ 1 × 10 ‒ 16𝑐𝑚2

10 m, thus absorbance A = ) and only a fraction that non-radiatively dissipates turns 𝜎𝑎𝐶𝐿 = 0.06
into heat (assume to be 40%, since quantum yield of SYTO9=0.6). The resulting fluctuation in 

local temperature is estimated to be around 0.3 ℃ ( , Eheat the energy that turns into heat, 
∆𝑇 =

𝐸ℎ𝑒𝑎𝑡

𝐶𝑝𝑚
Cp the specific heat (water: 4.184 J/(g·℃)), m the mass). The lasing wavelength might have a drift 
of 0.06 nm accordingly. However, no build-up effect is expected under continuous pulse excitation 
due to the small duty cycle (5 ns/50 ms) of the 20 Hz OPO laser.
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