Supporting Information

Robust Manufacturing of Lipid-Polymer Nanoparticles through Feedback Control of

Parallelized Swirling Microvortices

Michael J. Toth,^a Taeyoung Kim,^a and YongTae Kim^{a-d*}

^aGeorge W. Woodruff School of Mechanical Engineering, ^bWallace H. Coulter Department of Biomedical Engineering, ^cParker H. Petit Institute for Bioengineering and Bioscience, ^dInstitute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

*Corresponding author:

YongTae Kim, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 345 Ferst Drive (Rm 3134), Atlanta, GA 30332, (phone) 404-385-1478, (fax) 404-385-8535, (email) <u>ytkim@gatech.edu</u>

	CFD simulations of mixing efficiency		
SMR diameter	1mm	2mm	4mm
Section 1	۲	0	
Section 2	6		
Section 3			0
Section 4	\$		
Section 5	۲		
Legend	0.5 Mixing Efficiency		

Fig. S1. CFD simulations of the SMR predicting the mixing efficiency at crosssections along the height of the SMR with varied diameters (1mm, 2mm, and 4mm).

Fig. S2. Design of a parallelized microvortex array (PMA). (a) Fluidic circuit analog decomposition of the PMA network. Z_1 is the impedance of inlet channels connecting all branches of the SMRs. Z_2 is the impedance of the SMR-connecting channels. Z_3 is the impedance of the inlet of the SMR. Z₄ is the impedance of the SMR. Flow rate ratio is defined as the ratio between the inlet flows of the final to the first SMRs within a single column. (b) As the array size increases, the flow rate ratio of the fluidic circuit analog decreases more steeply with regard to Z_2 : Z_3 ratio. The current PMA size is 5x5.

Fig. S3. Graphical representation of a mixing efficiency model.

Fig. S4. Disturbance profile of LPNP precursor composition with an induced decrease in the lipid stream pressure.