| Electror | ic Supple | ementar | y Material  | (ESI) | ) for Lab | on a Chip. |
|----------|-----------|---------|-------------|-------|-----------|------------|
|          |           |         | yal Society |       |           |            |

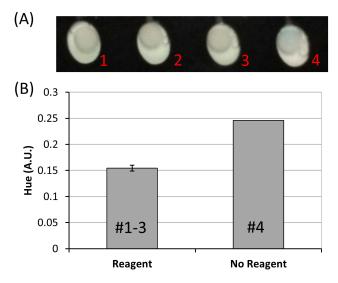
## **Electronic Supplementary Information for:**

## Color Manipulation through Microchip Tinting for Colorimetric Detection Using Hue Image Analysis

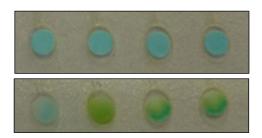
Shannon T. Krauss, Aeren Q. Nauman, Gavin Garner, and James P. Landers A.c.d\*

<sup>a</sup>Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.

<sup>b</sup>TeGrex Technologies, Charlottesville, VA 22904, USA.


<sup>c</sup>Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA.

<sup>d</sup>Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA.


\*To whom correspondence should be addressed: Email: landers@virginia.edu; phone: 434-243-8658; fax 434-243-8852

## **Table of Contents**

| Figure S-1. Tinting reagent paper with dye.                                                                                         | Page S-3 |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure S-2. Images of tinting with dye on reagent paper punches.                                                                    | Page S-3 |
| <b>Table S-1.</b> Threshold values for determining a positive sample of H <sub>2</sub> O <sub>2</sub> using print-based tinting.    | Page S-4 |
| <b>Table S-2.</b> Threshold values for determining a positive sample of H <sub>2</sub> O <sub>2</sub> using external light tinting. | Page S-4 |



**Figure S-1.** Tinting reagent paper with dye. (A) Images of paper punches tinted with erioglaucine before ammonium titanyl oxalate reagent was added (1-3) and tinted without reagent added (4) punches. (B) Difference in hue response for the dye tinted punches in (A) with and without added reagent.



**Figure S-2.** Images of tinting with dye on reagent paper punches. Images of  $H_2O_2$  reagent punches tinted blue (top) and a heterogeneous color change with 10 mg/mL  $H_2O_2$  added to the punches (bottom).

|  |       | % Transparency |      |      |      |      |      |      |      |
|--|-------|----------------|------|------|------|------|------|------|------|
|  |       | 0              | 50   | 75   | 80   | 85   | 90   | 95   | 100  |
|  | Red   | 0.05           | 0.06 | 0.04 | 0.07 | 0.08 | 0.09 | 0.15 | 0.31 |
|  | Green | 0.21           | 0.23 | 0.25 | 0.23 | 0.19 | 0.22 | 0.19 | 0.11 |
|  | Blue  | 0.65           | 0.63 | 0.62 | 0.57 | 0.58 | 0.58 | 0.48 | 0.11 |
|  | Cyan  | 0.53           | 0.51 | 0.53 | 0.47 | 0.50 | 0.47 | 0.36 | 0.11 |

**Table S-1.** Threshold values for determining a positive sample of  $H_2O_2$  using print-based tinting. Cyan, blue, and green thresholds are [0]-3 $\sigma$ . Red thresholds are [0]+3 $\sigma$ .

Pe Tint Color

|  |       | Voltage |      |      |      |      |      |  |
|--|-------|---------|------|------|------|------|------|--|
|  |       | 8.0     | 8.2  | 8.4  | 8.6  | 8.8  | 9.0  |  |
|  | Red   | 0.04    | 0.02 | 0.03 | 0.03 | 0.06 | 0.08 |  |
|  | Green | 0.40    | 0.40 | 0.39 | 0.39 | 0.38 | 0.35 |  |
|  | Blue  | 0.61    | 0.60 | 0.59 | 0.59 | 0.59 | 0.59 |  |
|  | Cyan  | 0.48    | 0.48 | 0.48 | 0.48 | 0.49 | 0.49 |  |

**Table S-2.** Threshold values for determining a positive sample of  $H_2O_2$  using external light tinting. Cyan, blue, and green thresholds are [0]-3 $\sigma$ . Red thresholds are [0]+3 $\sigma$ . All hue values are in A.U.