
1

Electronic Supplementary Information

Fluorescence-Activated Droplet Sorting of Lipolytic Microorganisms Using a

Compact Optical System

Yuxin Qiaoa, b, Xiaoyan Zhaoa, Jun Zhua, Ran Tua, Libing Donga, Li Wanga, Zhiyang Donga, b, Qinhong

Wangd, Wenbin Dua, c, *

a State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences,

Beijing 100101, China
b College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
c Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
d Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology,

Chinese Academy of Sciences, Tianjin 300308, China

* Corresponding author: wenbin@im.ac.cn (E-mail)

Chemicals and materials

All reagents were purchased from commercial sources and used as received unless otherwise stated.

Silicon wafer was purchased from Qimin Silicon Material Co., Ltd. (Shanghai, China).

Photomasks were designed in AutoCAD and ordered from Heheng Optoelectronics (Changsha,

China). SU-8 photoresist was purchased from MicroChem Corp. (Newton, MA, USA). Poly-

dimethylsiloxane (PDMS) was purchased from Momentive Performance Materials Inc. (Waterford,

NY, USA). Syringe pumps (Pump 11 PicoPlus Elite, Harvard Apparatus, Holliston, MA, USA)

was used for controlling fluid flow in microfluidic devices. Gastight glass syringes (Agilent, Santa

Clara, CA, USA) with volume of 250 μL or 500 μL were used to deliver solutions. LB broth

medium and Potassium phosphate were purchased from Sangon (Shanghai, China). Marine broth

2216 was purchased from BD (Franklin Lakes, New Jersey, USA). Peptone was purchased from

Aoboxing Bio-Tech (Beijing, China). Magnesium sulfate heptahydrate was purchased from

Sinopharm (Shanghai, China). Ammonium sulfate was purchased from Guanghua Sci-Tech

(Guangzhou, China). p-nitrophenyl palmitate (p-NPP) was purchased from Aladdin (Shanghai,

China). Tributyrin was purchased from Tokyo Chemical Industry (TCI, Tokyo, Japan).

Construction and operation of the compact optical system for FADS.

The compact optical system for FADS was composed of a detection module to measure the

fluorescence of picoliter droplets, a high voltage module to deliver high voltage-high frequency

electric field to solder-injected electrodes, an Edgertronic™ high speed camera (SC1

Monochrome version, Sanstreak Corp., San Jose, CA, USA) to capture the images and videos,

and a power supply to control the microscope and the FADS system. The detection module had

all optical components aligned and die bonded in a compact size (160 mm×143 mm×54 mm), and

was connected to the side port of an standard inverted microscope (IX81; Olympus, Tokyo, Japan)

Electronic Supplementary Material (ESI) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2017

2

via its V-mount without further optical alignment. The detection module used a high-power diode

laser (200 mW, 470 nm, NDB7675, Nichia, Tokushima, Japan), three photomultipliers (R5600U,

Hamamatsu Photonics, Hamamatsu, Japan), and a 2-MHz 24bit analog-to-digital conversion

circuit. This compact module measured three different fluorescence signals of various

fluorophores simultaneously as listed in Table S1. In this work, only one photomultiplier (PMT1)

was used for measurement of FDB hydrolysis by lipase. The FADS process was controlled using

a program written in LabVIEW software (National Instruments, USA). Time series recordings

were analysed using a program written in Matlab (MathWorks, Natick, MA, USA) to extract the

fluorescence intensities of all droplets. The histograms were generated to show the distribution of

droplet fluorescence intensity, as well as to determine the threshold of sorting. The sorting

threshold was defined based on the histogram we obtained for each experiment, and might vary

based on PMT gain (controlled by high voltage applied to the photomultiplier).

The leakage test for the fluorogenic substrate FDB in picoliter droplet system

We designed and made a microfluidic device with two flow-focusing junctions which can produce

1:1 proportion of positive droplets containing 25 μM FDB and 40 U mL-1 lipase, and negative

droplets containing 25 μM FDB without lipase. The droplets were directly mixed and collected in

an Eppendorf tube. 10 μL of mixed droplets were pipetted into a CountessTM cell counting chamber

(Cat. No. C10228, ThermoFisher, USA), and sealed with capillary wax to avoid evaporation. To

investigate the leakage of fluorescence dye between droplets, the monolayer droplet array in the

chamber was imaged by fluorescence microscopy (Eclipse Ti, Nikon, Tokyo, Japan).

Amplification, sequencing and phylogenetic analysis of 16S rRNA genes

The 16S rRNA genes of obtained bacterial strains were amplified by PCR with the forward primer

27F and the reverse primer 1492R as described1. The obtained sequences were assembled using

SeqMan software (DNASTAR). The sequence similarity was analyzed by comparing 16S rRNA

gene sequences of obtained strains with known sequences available from the EzTaxon-e database

(http://www.ezbiocloud.net/eztaxon)2, The phylogenetic analysis based on complete 16S rRNA

gene sequences indicates that the strains are closely related to reported strains (98.56% to 100%,

as listed in Supplementary Table S2). Sequences were then aligned using CLUSTAL W3, and the

phylogenetic tree was established with MEGA 6 (Molecular Evolutionary Genetics Analysis

version 6) program4, using the neighbor-joining5 and the maximum-likelihood method, with

bootstrap values based on 1000 replications6.

Lipase activity assay.

Analysis of extracellular lipase activity was carried out following the colorimetric method using

p-NPP as the substrate. First, we mixed 100 μL p-NPP (0.15 to 3 mg/mL in isopropanol) with 1.8

mL Tris-HCl (50 mM, pH7.5), and incubated it at 37 °C for 5 min. A concentrated enzyme solution

of 100 μL volume obtained by ultrafiltration was then added, and incubated at 37°C for another 10

min. During this step, p-nitrophenol was enzymatically released from the substrate p-NPP. Then,

http://www.ezbiocloud.net/eztaxon

3

we added 500 μL trichloroacetic acid (TCA, 10% w/v in water) into the tube to stop the reaction.

We added 500 μL Na2CO3 solution (10% w/v in water) as the chromogenic agent, and measured

the absorbance of solution at 410 nm.

Quantification of Sorting efficiency.

The efficiency of droplet sorting is defined as enrichment factor as previously described by Jean-

Christophe Baret et al.7 Briefly, the ratio of positive droplets to negative droplets is defined as ε

as:

ε =
𝑁+
𝑁−

We obtained ε based on counting of more than 2000 droplets from fluorescence images. The

enrichment is defined as the ratio of ε′ after sorting to ε before sorting:

η =
𝜀′

𝜀

In the sorting experiments of a binary mixture of positive and negative droplets made with lipase

and FDB, we obtained an 82-fold enrichment of positive droplets after sorting (Fig. S2).

References

1. Lane, DJ; Pace, B; Olsen, GJ; et al. Rapid determination of 16S ribosomal RNA sequences for

phylogenetic analyses, Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 6955-6959.

2. Kim, OS; Cho, YJ; Lee, K; et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene

sequence database with phylotypes that represent uncultured species, Int. J. Syst. Evol.

Microbiol., 2012, 62, 716-721.

3. Thompson, JD; Higgins, DG; Gibson, TJ. CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice, Nucleic Acids Res., 1994, 22, 4673-4680.

4. Tamura, K; Peterson, D; Peterson, N; et al. MEGA5: molecular evolutionary genetics analysis

using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol.

Evol., 2011, 28, 2731-2739.

5. Saitou, N; Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic

trees, Mol. Biol. Evol., 1987, 4, 406-425.

6. Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution,

1985, 39, 783-791.

7. Baret, JC; Miller, OJ; Taly, V; et al. Fluorescence-activated droplet sorting (FADS): efficient

microfluidic cell sorting based on enzymatic activity, Lab Chip, 2009, 9, 1850-1858.

4

Table S1. Configuration of fluorescence channels of the compact FADS detection system.

Channel Laser (nm) Bandpass

Filter (nm)

Dichroic

Filter (nm)

Fluorochromes

PMT 1 470 505/40 485 FITC, Alexa Fluor

488,CFSE, Fluo-3

PMT 2 470 600/42 565 PE, PI

PMT 3 470 635/20 610 ECD, PE-Texas Red, PE-

CF594, PI, PE-Cy5

Notes: FITC, Fluorescein isothiocyanate; CFSE, Carboxyfluorescein succinimidyl ester; PE, R-

phycoerythrin; PI, Propidium iodide; ECD, PE-Texas Red®-x available from Beckman-Coulter; PE-

Texas Red, A tandem conjugate of Texas Red with R-phycoerythrin; PE-CF594, a tandem conjugate that

combines PE and CF594, available from BD Biosciences; PE-Cy5 a tandem conjugate that combines

phycoerythrin and a cyanine dye available from BD Biosciences.

Figure S1. The compact optical system designed for FADS. (A) Diagram of the optical setup. The

microscope has a side port, where we place the portable FADS detection module which integrating the

laser PMT: photomultiplier; (B) Photograph of the optical experiment setup in panel A; (C) Engineering

drawing and photograph of the internal structure of the portable FADS detection module.

5

Figure S2. Microscopic images of microfluidic devices for (A) droplet generation, (B) picoinjection of

substrate into the droplets, and (C) FADS triggered by dielectrophoresis. Scale bar: 50 μm.

 E

Figure S3. Sorting efficiency of fluorescence-activated droplet sorting (FADS) evaluated by commercial

available lipase and its fluorogenic substrate FDB. (A, B) A bright-field and fluorescence merged image

of the positive-sorted droplets and the statistical analysis. (C, D) the negative-sorted droplets and the

statistical analysis. (E) Time series during a sort showing the detected fluorescence signal (blue). Those

peaks about the threshold (red dashed line) was sorted and collected.

6

Figure S4. Validation of FDB as the fluorogenic substrate for FADS-based lipase screening. (A)

Photograph of the tube assay which mixed Pseudoalteromonas lipolytica S29 with FDB of different

concentrations. (B) Sorting histogram of droplet fluorescence intensities for S29 cells using FDB of

different concentrations. FDB solution was added to droplets by picoinjection. After 1 hour of the

picoinjection step, the cells were sorted. The counts were normalized to 100% based on around 200,000

droplets of various FDB concentrations. Intensity threshold of 32 was used to enumerate droplets.

Figure S5. Images of typical agar plates with growth of bacterial cells demulsified from positive-sorted

droplets. (A, B) for Daqu starter sample of Gujin liquor from Anhui Province, China, (C) for Lalong hot

spring in Tibet, China.

7

Figure S6. Lipase assays on LB agar plates with 1% (v/v) tributyrin and Rhodamine B (0.5%) for Lalong

Hot Spring sample. (A) Before FADS sorting, sample was plated with 10-6 X diluted, showing no

transparent halos. (B) Negatively sorted colonies showing no transparent halos. (C) Positively sorted

colonies showing transparent halos around colonies. The images were taken after 3 d cultivation.

Histogram (D) and the time series (E) are showing the distribution of droplet fluorescence intensities for

sorting of Lalong Hot Spring sample with 250 μM FDB (final concentration) as the substrate. Droplet

detection threshold of 275 and sorting threshold of 350 were used.

8

Figure S7. Images show typical results of plate halo assay for strains obtained by FADS (Zoige wetland

samples).

Figure S8. The front panel of Matlab program for data processing of FADS fluorescence signal recording.

9

Peak analysis program written in Matlab.

function varargout = FI_peakfinder(varargin)

% FI_PEAKFINDER MATLAB code for FI_peakfinder.fig

% FI_PEAKFINDER, by itself, creates a new FI_PEAKFINDER or raises the existing

% singleton*.

%

% H = FI_PEAKFINDER returns the handle to a new FI_PEAKFINDER or the handle to

% the existing singleton*.

%

% FI_PEAKFINDER('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in FI_PEAKFINDER.M with the given input arguments.

%

% FI_PEAKFINDER('Property','Value',...) creates a new FI_PEAKFINDER or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before FI_peakfinder_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to FI_peakfinder_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help FI_peakfinder

% Last Modified by GUIDE v2.5 15-Nov-2017 17:23:49

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @FI_peakfinder_OpeningFcn, ...

 'gui_OutputFcn', @FI_peakfinder_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

10

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before FI_peakfinder is made visible.

function FI_peakfinder_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to FI_peakfinder (see VARARGIN)

% Choose default command line output for FI_peakfinder

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes FI_peakfinder wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = FI_peakfinder_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

11

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

global View_length len_data

val_sli=get(handles.slider1,'Value');

val_sli=val_sli*(len_data-View_length);

set(handles.Ori_sig,'Xlim',[val_sli val_sli+View_length-1]);

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function slider1_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes on button press in Save_all.

function Save_all_Callback(hObject, eventdata, handles)

% hObject handle to Save_all (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global FIDATA View_length len_data

View_length=4000;

[filename,pathname]=uiputfile({'*.jpg';'*.bmp'},'save current image','untitled.jpg');

fig_count=1;

for nn=1:(floor((len_data)/View_length))

 fidstart_d=(nn-1)*(View_length)+1;

 figend_d=nn*(View_length);

 fig_count = fig_count+1;

 figure(fig_count);

 % set(gcf,'Position',[50,50,900,600]);

 y1_lim=max(FIDATA(fidstart_d:figend_d));

 plot(fidstart_d:figend_d,FIDATA(fidstart_d:figend_d),'k');

 xlim([fidstart_d figend_d]);

 % saveas(gcf,[pathname,num2str(nn)],'fig');

12

 saveas(gcf,[pathname,num2str(nn)],'jpg');

 close gcf

end

for nn=floor((len_data)/(View_length))+1

 if mod(length(FIDATA),4000)==0

 break

 else

 fidstart_d=(floor((len_data-1)/(View_length)))*(View_length)+1;

 figend_d=len_data;

 figure(floor((len_data-1)/(View_length))+1);

 % set(gcf,'Position',[50,50,900,600]);

 y1_lim=max(FIDATA(fidstart_d:figend_d));

 plot(fidstart_d:figend_d,FIDATA(fidstart_d:figend_d),'k');

 xlim([fidstart_d figend_d]);

 % saveas(gcf,[pathname,num2str(nn)],'fig');

 saveas(gcf,[pathname,num2str(nn)],'jpg');

 close gcf

 end

end

% --

function File_Callback(hObject, eventdata, handles)

% hObject handle to File (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

function Load_Callback(hObject, eventdata, handles)

% hObject handle to Load (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

function Exit_Callback(hObject, eventdata, handles)

% hObject handle to Exit (see GCBO)

13

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

clc;

close all;

close(gcf);

% --

function load_xls_Callback(hObject, eventdata, handles)

% hObject handle to load_xls (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[name path]=uigetfile({'*.xls'},'load the fluorescence signal');

if isequal(name,0)||isequal(path,0)

 errordlg('Not an effective path','error');

 return;

else

 global FIDATA View_length len_data

 View_length=4000;

 FIDATA=xlsread([path name]);

 FIDATA(FIDATA==-2^23)=2^23;%% fluorescence intensity saturation control

 len_data=length(FIDATA);

 msgbox('Signal successfully loaded','Message');

 axes(handles.Ori_sig);

 plot(FIDATA);

 guidata(hObject,handles)

end

% --

function load_csv_Callback(hObject, eventdata, handles)

% hObject handle to load_csv (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[name path]=uigetfile({'*.csv'},'load the fluorescence signal');

if isequal(name,0)||isequal(path,0)

 errordlg('Not an effective path','error');

 return;

else

 global FIDATA View_length len_data

 View_length=4000;

 FIDATA=csvread([path name]);

 FIDATA(FIDATA==-2^23)=2^23;%% fluorescence intensity saturation control

14

 len_data=length(FIDATA);

 msgbox('Signal successfully loaded','Message');

 axes(handles.Ori_sig);

 plot(FIDATA);

 guidata(hObject,handles)

end

% --- Executes on slider movement.

function slider2_Callback(hObject, eventdata, handles)

% hObject handle to slider2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

global View_length len_data

val_sli=get(handles.slider2,'Value');

val_sli=val_sli*(len_data-View_length);

set(handles.Processing_part,'Xlim',[val_sli val_sli+View_length-1]);

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function slider2_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function thre_num_Callback(hObject, eventdata, handles)

% hObject handle to thre_num (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of thre_num as text

% str2double(get(hObject,'String')) returns contents of thre_num as a double

15

global thre1

thre11=get(hObject,'String');

thre1=str2double((get(hObject,'String')));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function thre_num_CreateFcn(hObject, eventdata, handles)

% hObject handle to thre_num (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in Start_pro.

function Start_pro_Callback(hObject, eventdata, handles)

% hObject handle to Start_pro (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global FIDATA len_data thre1 peak_loc_all peak_num_all peak_value_all PEAK_VALUE cal_count

DistanceThreshold

len_data=length(FIDATA);

if mod(length(FIDATA),1e6)==0%% Process the whole dataset as several sub-datasets

 PEAK_LOC=cell(floor(length(FIDATA)/1e6),1);

 PEAK_VALUE=cell(floor(length(FIDATA)/1e6),1);

else

 PEAK_LOC=cell(floor(length(FIDATA)/1e6)+1,1);

 PEAK_VALUE=cell(floor(length(FIDATA)/1e6)+1,1);

end

for cal_count=1:length(PEAK_VALUE)

 clear FI_NUM point_loc Value_peak FI_DEC diff_pointloc

 if cal_count==length(PEAK_VALUE)

 FI_NUM=FIDATA((cal_count-1)*1e6+1:end);

 FI_NUM(FI_NUM<0)=0;

 else

 FI_NUM=FIDATA((cal_count-1)*1e6+1:cal_count*1e6);

16

 FI_NUM(FI_NUM<0)=0;

 end

 len_segment=length(FI_NUM);

 FI_DEC=diff(FI_NUM);%% Get first order difference of intensity

 FI_DEC(FI_DEC<0)=0;

 FI_DEC(FI_DEC>0)=1;

 point_loc=zeros(len_segment-1,1);

 for ii=2:len_segment-2

 if (FI_DEC(ii)==1)&&(FI_DEC(ii+1)==0)%%Get peak position^

 point_loc(ii)=ii;

 else

 point_loc(ii)=0;

 end

 end

 point_loc=point_loc(point_loc~=0);

 point_loc=point_loc+1;

 Value_peak=FI_NUM(point_loc);

 %% peak selection

 for pp=1:length(point_loc)

 if FI_NUM(point_loc(pp))<thre1%% threshold screening

 point_loc(pp)=0;

 Value_peak(pp)=0;

 end

 end

 point_loc=point_loc(point_loc~=0);

 Value_peak=Value_peak(Value_peak~=0);

 diff_pointloc=diff(point_loc);%% Get first order difference of peak position and peak-to-peak distance

 %temp=(mean(diff_pointloc)-2*std(diff_pointloc));

 temp = DistanceThreshold;

 for MM=1:length(point_loc)-1

 if diff_pointloc(MM)>temp

 continue

 else

 array_temp=[Value_peak(MM),Value_peak(MM+1)]; %If two peaks are too close, chose the

larger peak value, and discard the smaller one

17

 [num loc]=max(array_temp);

 point_loc(MM+2-loc)=NaN;

 Value_peak(MM+2-loc)=NaN;

 end

 end

 point_loc=point_loc(isnan(point_loc)==0);

 Value_peak=Value_peak(isnan(Value_peak)==0);

 point_loc=point_loc+(cal_count-1)*1e6;

 PEAK_LOC{cal_count,1}=point_loc;

 PEAK_VALUE{cal_count,1}=Value_peak;

end

peak_loc_all=[];

peak_value_all=[];

for MM = 1:length(PEAK_VALUE)

 peak_value_all=[peak_value_all;PEAK_VALUE{MM,1}];

 peak_loc_all=[peak_loc_all;PEAK_LOC{MM,1}];

end

peak_num_all=peak_value_all;

axes(handles.Processing_part)

plot(FIDATA(1:end),'k');

hold on

plot(peak_loc_all(1:end),FIDATA(peak_loc_all(1:end)),'r*');

axes(handles.Hist)

hist(peak_num_all,200)

set(gca,'YScale','log');

title('Histogram of Droplet Fluorescence Intensity');

ylabel('counts');

xlabel('Droplet Fluorescence Intensity');

guidata(hObject,handles)

% --- Executes on button press in Reset_pro.

function Reset_pro_Callback(hObject, eventdata, handles)

% hObject handle to Reset_pro (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

try

 delete(allchild(handles.Processing_part));

 delete(allchild(handles.slider2));

 %% set(handles.thre_num,'string',' ');

 delete(allchild(handles.Start_pro));

18

 delete(allchild(handles.Hist));

 delete(allchild(handles.log_scale));

 clear peak_loc_all peak_num_all thre1

end

% --- Executes on button press in Reset_all.

function Reset_all_Callback(hObject, eventdata, handles)

% hObject handle to Reset_all (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global FIDATA View_length len_data thre1 Value_peak point_loc

try

 delete(allchild(handles.Ori_sig));

 delete(allchild(handles.slider1));

 delete(allchild(handles.Save_all));

 delete(allchild(handles.Processing_part));

 delete(allchild(handles.slider2));

 set(handles.thre_num,'string',' ');

 delete(allchild(handles.Start_pro));

 delete(allchild(handles.Hist));

 delete(allchild(handles.log_scale));

 clear FIDATA View_length len_data thre1 peak_loc_all peak_num_all

 clear all

end

% --- Executes on button press in save_hist.

function save_hist_Callback(hObject, eventdata, handles)

% hObject handle to save_hist (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global peak_num_all

[filename,pathname]=uiputfile({'*.jpg';'*.bmp'},'save current image','untitled.jpg');

if isequal([filename pathname],[0,0])

 errordlg('image not saved','error')

 return

else

 figure

 hist(peak_num_all,200)

 set(gca,'YScale','log');

19

 title('Histogram of Droplet Fluorescence Intensity');

 ylabel('counts');

 xlabel('Droplet Fluorescence Intensity');

 saveas(gcf,[pathname,filename],'jpg');

 close gcf

 guidata(hObject,handles)

end

% --- Executes on button press in save_image.

function save_image_Callback(hObject, eventdata, handles)

% hObject handle to save_image (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global FIDATA View_length len_data peak_loc_all peak_num_all

[filename,pathname]=uiputfile({'*.jpg';'*.bmp'},'save current image','untitled.jpg');

fig_count=1;

for nn=1:(floor((len_data)/View_length))

 fidstart_d=(nn-1)*(View_length)+1;

 figend_d=nn*(View_length);

 fig_count = fig_count+1;

 figure(fig_count);

 set(gcf,'Position',[50,50,900,600]);

 y1_lim=max(FIDATA(fidstart_d:figend_d));

 y2_lim=max(FIDATA(fidstart_d:figend_d));

 plot(fidstart_d:figend_d,FIDATA(fidstart_d:figend_d),'k');

 xlim([fidstart_d figend_d]);

 hold on

 plot(peak_loc_all(1:end),FIDATA(peak_loc_all(1:end)),'r*');

 text(figend_d-10,y2_lim,'signal');

 saveas(gcf,[pathname,num2str(nn)],'jpg');

 close gcf

end

for nn=floor((length(FIDATA))/(4000))+1

 if mod(length(FIDATA),4000)==0

 break

 else

 fidstart_d=(floor((length(FIDATA)-1)/(4000)))*(4000)+1;

 figend_d=length(FIDATA);

20

 figure(floor((len_data-1)/(4000))+1);

 set(gcf,'Position',[50,50,900,600]);

 y1_lim=max(FIDATA(fidstart_d:figend_d));

 y2_lim=max(FIDATA(fidstart_d:figend_d));

 plot(fidstart_d:figend_d,FIDATA(fidstart_d:figend_d),'k');

 xlim([fidstart_d figend_d]);

 hold on

 plot(peak_loc_all(1:end),FIDATA(peak_loc_all(1:end)),'r*');

 text(figend_d-10,y2_lim,'signal');

 saveas(gcf,[pathname,num2str(nn)],'jpg');

 close all

 end

end

% --- Executes on button press in save_peak_csv.

function save_peak_csv_Callback(hObject, eventdata, handles)

% hObject handle to save_peak_csv (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global peak_loc_all peak_value_all

[filename,pathname]=uiputfile('*.csv','save peak information','untitled.csv');

% save([pathname,filename],'peak_value_all','peak_loc_all');

csvwrite([pathname,filename],peak_value_all);

guidata(hObject,handles)

% --

function hist_peak_Callback(hObject, eventdata, handles)

% hObject handle to hist_peak (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[name path]=uigetfile({'*.mat'},'load the peak information');

if isequal(path,0)

 errordlg('Not an effective path','error');

 return;

else

 global peak_find peak_num_all

 peak_find=[];

 MAT_File=dir([path '*.mat']);

21

 len_file=length(MAT_File);

 for file_count=1:len_file

 load([path MAT_File(file_count).name]);

 peak_find=[peak_find;peak_value_all];

 end

 peak_num_all=peak_find;

 msgbox('Peak information successfully loaded','Message');

 axes(handles.Hist);

 hist(peak_num_all,200)

 set(gca,'YScale','log');

 title('Histogram of Droplet Fluorescence Intensity');

 ylabel('counts');

 xlabel('Droplet Fluorescence Intensity');

 guidata(hObject,handles)

end

% --- Executes on button press in save_peak_mat.

function save_peak_mat_Callback(hObject, eventdata, handles)

% hObject handle to save_peak_mat (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global peak_loc_all peak_value_all

[filename,pathname]=uiputfile('*.mat','save peak information','untitled.mat');

save([pathname,filename],'peak_value_all','peak_loc_all');

guidata(hObject,handles)

function edit5_Callback(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text

% str2double(get(hObject,'String')) returns contents of edit5 as a double

global DistanceThreshold

DistanceThreshold=get(hObject,'String');

DistanceThreshold=str2double((get(hObject,'String')));

guidata(hObject,handles);

22

% --- Executes during object creation, after setting all properties.

function edit5_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

