Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2018

# High-Throughput Sorting of Eggs for Synchronization of C. *elegans* in a Microfluidic Spiral Chip

Samuel Sofela<sup>1</sup>, Sarah Sahloul<sup>1</sup>, Mehdi Rafeie<sup>2</sup>, Taehong Kwon<sup>4</sup>, Jongyoon Han<sup>4,5,6</sup>, Majid Ebrahimi Warkiani<sup>7</sup>, Yong-Ak Song<sup>1,3</sup>

<sup>1</sup>Division of Engineering, New York University Abu Dhabi, United Arab Emirates

<sup>2</sup>School of Mechanical Engineering, University of New South Wales, Sydney, Australia

<sup>3</sup>Department of Chemical and Biomolecular Engineering, New York University, United States

<sup>4</sup>Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, United States

<sup>5</sup>Department of Biological Engineering, Massachusetts Institute of Technology, United States

<sup>6</sup>BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore

<sup>7</sup>School of Biomedical Engineering, University of Technology Sydney, Australia

### **1. Device Geometry**

| Spiral type                               | Flat                           |
|-------------------------------------------|--------------------------------|
| First diameter                            | 10 mm                          |
| Second diameter                           | 32.4 mm                        |
| Turns                                     | 8                              |
| Final turns                               | 6                              |
|                                           | (Inner two turns were removed) |
| Spacing between spiral turns              | 400 µm                         |
| Length of the spiral loops                | 464.7 mm                       |
| Inner depth                               | 220 µm                         |
| Outer depth                               | 160 μm                         |
| Inner outlet length                       | 6 mm                           |
| Inner outlet width                        | 750 μm                         |
| Outer outlet length                       | 3.8 mm                         |
| Outer outlet width                        | 1000 μm                        |
| Angle between the inner and outer outlets | 58.4 °                         |

Table S1. Geometry information regarding the spiral microfluidic channel. The 3D modeling tool (Rhinoceros Version 5.3.2, McNeel North America, USA) was used to model the chip.



Figure S1. Geometry information regarding the spiral microfluidic channel.



Figure S2. Average counts of organisms per 10  $\mu$ L collected from the inner outlet and outer outlet after sorting of single populations of eggs, L1 and L4.

# 2. Figures:



Figure S3. Average sorting efficiency (SE) of organisms per 10  $\mu$ L collected from the inner outlet and outer outlet after sorting of single populations of eggs, L1 and L4.



Figure S4. Spatial distribution of organisms (eggs and L4) within the channel during the sorting of eggs from eggs+L4 mixture. The loops are labeled R0, R2, R3.....R12 for every half loop from the inlet to the outermost loop.



Figure S5. Average counts of organisms per 10  $\mu$ L collected from the inner outlet and outer outlet after sorting of heterogeneous population of eggs + L1



Figure S6. Average counts of organisms per 10  $\mu$ L collected from the inner outlet and outer outlet after sorting of heterogeneous population of eggs + L4



Figure S7. Average counts of organisms per 10  $\mu$ L collected from the inner outlet and outer outlet after sorting of heterogeneous population of L1 + L4



Figure S8. Average counts of organisms per 10  $\mu$ L collected from the inner outlet and outer outlet after sorting of heterogeneous population of eggs + L1 + L4 (~7 organisms/10 uL)



Figure S9. Average counts of organisms per 10  $\mu$ L collected from the inner outlet and outer outlet after sorting of heterogeneous population of eggs + L1 + L4 at the doubled concentration (~14 organisms/10  $\mu$ L)



Figure S10. Viability Assay: Reproductive fitness (egg count) and behavioral (locomotion: velocity, body bends and amplitude) comparison between L4 worms collected from the spiral chip

at 10 mL/min and L4 worms (control) that did not undergo sorting in the spiral chip. Student t-test showed that there is no significant difference in these behaviors of both categories. p > 0.05 in all cases.

## 3. Equations for SE, SP, and percentage of L1 & L4 in the inner outlet:

(a) Sorting homogenous population:

• Sorting efficiency for  $Eggs = \frac{\# of \ eggs \ in \ the \ inner \ outlet}{\# of \ eggs \ in \ the \ inner \ and \ outlet}$ 

• Sorting efficiency for  $L1 = \frac{\# of L1 in the outer outlet}{\# of L1 in the inner and outer outlet}$ 

• Sorting efficiency for  $L4 = \frac{\# of L4 \quad n \text{ the outer outlet}}{\# of L4 \text{ in the inner and outer outlet}}$ 

(b) Sorting heterogeneous population containing two developmental stages:

- Eggs+L1:
- Sorting efficiency for Eggs+ $L1 = \frac{\# of \ eggs \ in \ the \ inner \ outlet}{\# of \ eggs \ in \ the \ inner \ outlet}$

• Sample purity for Eggs+L1=  $\frac{\# of \ eggs \ in \ the \ inner \ outlet}{\# of \ eggs \ in \ the \ inner \ outlet+\# \ of \ 1 \ in \ the \ inner \ outlet}$ 

- Eggs+L4: •

- Sorting efficiency for Eggs+L4= # of eggs in the inner outlet # of eggs in the inner and outer outlet
  Sample purity for Eggs+L4= # of eggs in the inner outlet # of eggs in the inner outlet
- L1+L4: •
- Sorting efficiency for  $L1+L4 = \frac{\# of L1+L4 \text{ in the inner outlet}}{\# of L1+L4 \text{ in the inner and outer outlet}}$
- % of L1 in the inner outlet =  $\frac{\# of L1 \text{ in the inner outlet}}{\# of L1 \text{ and } L1 \text{ in the outer outlet}}$

- % of L4 in the inner outlet =  $\frac{100}{\# of L4 in the inner and L4 in the outer outlet}$
- (c) Sorting heterogeneous containing three developmental stages, and sorting heterogeneous population containing doubled concentration of three developmental stages:

- Sorting efficiency for Eggs+ $L1+L4 = \frac{\# of \ eggs \ in \ the \ inner \ outlet}{\# of \ eggs \ in \ the \ inner \ and \ outer \ outlet}$
- Sample purity for Eggs+L1+L4=  $\frac{\# of \ eggs \ in \ the \ inner \ outlet}{\# of \ eggs+L1+L4 \ in \ the \ inner \ outler}$ 0
- % of L1 in the inner outlet =  $\frac{\# of L1 \text{ in the inner outlet}}{\# of L1 + L4 + eggs \text{ in the inner}}$
- % of L4 in the inner outlet =  $\frac{\# of L4 \text{ in the inner outlet}}{\# of L1+L4+eggs \text{ in the inner}}$

### 4. Estimated lift force and Dean's forces:

The Reynold's number of the channel, Re, is given by:

$$Re = \frac{\rho U D_{h\_channel}}{\mu}$$

Where  $\rho$ , U,  $D_{h_{channel}}$  and  $\mu$  are density, maximum velocity, channel hydraulic diameter and dynamic viscosity, respectively.

The net inertial lift force,  $F_L$ , and Dean drag force,  $F_D$ , are estimated as<sup>1</sup>:

$$F_L = \frac{\rho U^2 a^4}{D_{h_{channel}}^2} f_L(Re, z_c)$$

$$F_D = 3\pi\mu a U_D$$

where a is the organism hydraulic diameter and  $f_L(Re, z_c)$  is the coefficient of the net lift force. Also,  $U_D$  is the magnitude of the secondary flow and is estimated as:

$$U_D = 1.8 \times 10^{-4} De^{1.63}$$

where *De* is Dean number  $De = Re \sqrt{\frac{D_h}{2R}}$  and *R* is the radius of curvature of the channel.

The organism centrifugal force can be estimated  $by^2$ :

$$F_{cent} = \rho \pi a^3 v_{ot}^2 / 6R$$

where  $v_{ot}$  are the organism tangential velocity.

#### References:

M. Rafeie, J. Zhang, M. Asadnia, W. Li and M. E. Warkiani, Lab Chip, 2016, 16, 2791-1 2802.

2 J. Zhang, S. Yan, R. Sluyter, W. Li, G. Alici and N.-T. Nguyen, *Sci. Rep.*, 2014, 4, 4527.

#### 5. Estimated g-force in Spiral Chip

Estimated egg acceleration,  $a = \frac{v^2}{R}$ 

Where v is the egg velocity in the spiral channel and R is the radius of curvature. The egg velocity is given by:

 $v = \frac{Q}{A}$ Where Q, Volumetric flowrate. For  $Q = 5 \frac{ml}{min} = 1.667 * 10^{-7} \frac{m^3}{s}$ 

Area,  $A = 0.5 * (220 + 160) * 1000 * 10^{-12}m^2 = 190 * 10^{-9}m^2$ 

$$v = 0.877 \frac{m}{s}$$

$$a_{max} = \frac{0.438^2}{10 * 10^{-3}} \ for R = 10mm(first\ loop)$$

 $a_{max} = 76.95 \frac{m}{s^2} \approx 8 \text{ g}$ 

#### 6. Supplemental videos

Video S1. High-speed video shows separation of eggs from L1+eggs into the inner outlet at 5 mL/min. Eggs flow towards the upper part of the channel, entering the inner outlet. L1 flows towards the lower part of the channel, entering in the outer channel.

Video S2. High-speed video shows separation of eggs from L4+eggs into the inner outlet at 5 mL/min. It is noticeable that eggs flow towards the upper part of the channel, entering in the inner outlet. L4 flows towards the lower part of the channel, entering in the outer channel. In the video, the worms exhibit random shapes and orientations (straight or coiled) which make the separation challenging.

Video S3. High-speed video shows separation of eggs from L1+L4+eggs (~7 organisms/10 uL) into the inner outlet at 10 mL/min. L1 and L4 flows into the outer outlet. In the video, a group of eggs flow into the inner channel. The worms exhibit random shapes and orientations (straight or coiled) which make the separation challenging.

Video S4. High-speed video shows separation of eggs from L1+L4+eggs into the inner outlet at 10 mL/min after doubling the concentration to ~14 organisms/10 uL. L1 and L4 flow into the outer outlet. A group of eggs flow in the inner channel. Plus, its noticeable that some eggs hit the wall.