# Journal Name

# ROYAL SOCIETY OF CHEMISTRY

## ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

**Supporting Information for** In-situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels<sup>†</sup>

Jérémy Decock,<sup>a</sup> Mathias Schlenk,<sup>b</sup> and Jean-Baptiste Salmon<sup>\*a</sup>

Received Date Accepted Date

DOI: 10.1039/xxxxxxxxx

www.rsc.org/journalname

### UV illumination field



**Fig. 1** UV illumination measured through a glass slide for rectangular patterns generated by the Primo setup, as a function of the power level of the laser (software units). Pattern areas:  $\circ: 270 \times 110 \ \mu\text{m}^2$ ,  $\Box: 385 \times 220 \ \mu\text{m}^2$ ,  $\diamond: 450 \times 270 \ \mu\text{m}^2$ . The continuous line is a guideline.

#### **Movies**

**Movie S1** – Fabrication of a hydrogel membrane (width  $w_m = 25 \ \mu$ m) using the Primo photo-patterning setup (real time). The red (resp. green) drawing is the pattern before (resp. after) photo-polymerization, and which is used to align existing microstructures with the photo-patterned hydrogel.

**Movie S2** – Illustration of the permeability measurements. A ramp of imposed trans-membrane pressure drops (see the dis-

<sup>a</sup> CNRS, Solvay, LOF, UMR 5258, Univ. Bordeaux, F-33600 Pessac, France.; E-mail: jean-baptiste.salmon-exterieur@solvay.com

played value) affects the coflow in the filtrate channel. Some fluorescent nanoparticles (500 nm in diameter) in the retentate channel accumulate on the membrane due to the trans-membrane flow. Membrane width  $w_m = 20 \ \mu$ m.

**Movie S3** – Accumulation of fluorescent nanoparticles (500 nm in diameter) on the membrane for a trans-membrane pressure drop of  $\delta p = 1.7$  bar (real time). Membrane width  $w_m = 20 \ \mu$ m.

**Movie S4** – Accumulation of small fluorescent nanoparticles (20 nm in diameter) on the membrane for a trans-membrane pressure drop  $\delta p = 200$  mbar applied at  $t \simeq 6$  s. The accumulated nanoparticles are then re-dispersed by a negative  $\delta p = -500$  mbar imposed at  $t \simeq 26$  s. Larger fluorescent nanoparticles (500 nm in diameter) in the filtrate channel help to evidence the flow. Membrane width  $w_m = 25 \ \mu$ m.

**Movie S5** – Frontal filtration at  $p_c = 6$  bar of a colloidal dispersion, see text for details. Membrane width  $w_m = 35 \ \mu m$ .

#### Relation between $\delta/w$ and $Q_m/Q$

The velocity profile in a straight microchannel with a rectangular cross-section  $h \times w$  is given by? :

$$v(x,y) = \frac{\Delta p}{\eta L} \frac{4h^2}{\pi^3} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^3} \left( 1 - \frac{\cosh(n\pi x/h)}{\cosh(n\pi w/2h)} \right) \sin(n\pi y/h), \quad (1)$$

where *L* is the channel length,  $\Delta p$  the pressure drop, and  $\eta$  the viscosity of the liquid. In the above relation,  $-w/2 \le x \le w/2$  and  $0 \le y \le h$ . The flow rates *Q* and *Q<sub>m</sub>* are given by

$$Q = \int_0^h dy \int_{-w/2}^{-w/2+\delta} dx v(x, y),$$
 (2)

$$Q_m = \int_0^h dy \int_{-w/2+\delta}^{w/2} dx v(x, y),$$
 (3)

and the ratio  $Q_m/Q$  can be easily calculated numerically for a given value  $\delta/w$ .

<sup>&</sup>lt;sup>b</sup> Physical Chemistry I, University of Bayreuth, D-95440 Bayreuth, Germany.

<sup>†</sup> Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

Fig. 2 shows  $Q_m/Q$  vs.  $\delta/w$  for the experimental aspect ratio investigated in the present work,  $h = 14 \ \mu \text{m}$ ,  $w = 165 \ \mu \text{m}$ . The



**Fig. 2** Ratio  $Q_m/Q$  vs.  $\delta/w$  for a channel rectangular cross-section  $h \times w = 14 \times 165 \ \mu\text{m}^2$  (black). The red line corresponds to the assumption  $h \ll w$  given by eqn (4).

ratio of flow rates is computed from the measured  $\delta/w$  using this curve. Note that for very thin microfluidic channels, i.e.  $h \ll w$ , both ratios are related by

$$\frac{\delta}{w} = \frac{Q}{Q + Q_m},\tag{4}$$

and this limiting case is shown for comparison in Fig. 2.

#### Table

Process parameters together with measured widths  $w_m$  and permeabilities  $\kappa$  for the datasets displayed in Figs. 6b and 7:

| $I  ({\rm mW/mm})^2$ | $	au_{exp}$ (ms) | $E  (mJ/mm^2)$ | <i>φ</i> <sub>p</sub> (%) | $10^{17} 	imes \kappa$ (m <sup>2</sup> ) | <i>W</i> <sub>m</sub> (μm) |
|----------------------|------------------|----------------|---------------------------|------------------------------------------|----------------------------|
| 20.0                 | 300              | 6              | 10                        | $\simeq 0$                               | 15                         |
| 20.0                 | 300              | 6              | 15                        | $\simeq 0$                               | 15                         |
| 20.0                 | 300              | 6              | 20                        | 0.29                                     | 15                         |
| 20.0                 | 300              | 6              | 25                        | 2.23                                     | 20                         |
| 20.0                 | 300              | 6              | 25                        | 2.16                                     | 15                         |
| 20.0                 | 300              | 6              | 25                        | 2.15                                     | 23                         |
| 20.0                 | 300              | 6              | 30                        | 7.60                                     | 23                         |
| 20.0                 | 300              | 6              | 35                        | 14.08                                    | 28                         |
| 20.0                 | 300              | 6              | 40                        | n/a                                      | no membrane                |
| 20.0                 | 100              | 2              | 25                        | 8.51                                     | 27                         |
| 11.5                 | 300              | 3.45           | 25                        | 6.37                                     | 22                         |
| 20.0                 | 200              | 4              | 25                        | 6.17                                     | 23                         |
| 11.5                 | 400              | 4.56           | 25                        | 3.30                                     | 27                         |
| 11.5                 | 400              | 4.56           | 25                        | 3.28                                     | 22                         |
| 11.5                 | 400              | 4.56           | 25                        | 3.24                                     | 14                         |
| 11.5                 | 500              | 5.75           | 25                        | 2.45                                     | 22                         |
| 20.0                 | 300              | 6              | 25                        | 2.21                                     | 15                         |
| 20.0                 | 300              | 6              | 25                        | 2.23                                     | 20                         |
| 20.0                 | 300              | 6              | 25                        | 2.15                                     | 23                         |
| 11.5                 | 600              | 6.9            | 25                        | 1.25                                     | 15                         |
| 11.5                 | 600              | 6.9            | 25                        | 0.87                                     | 15                         |

#### References

N. A. Mortensen, F. Okkels and H. Bruus, *Phys. Rev. E*, 2005, 71, 057301.