## **Electronic Supplementary Information**

## Dissecting binding of a β-barrel outer membrane protein by phage display

Luz M. Meneghini, Sarvind Tripathi, Marcus A. Woodworth, Sudipta Majumdar, Thomas L. Poulos, Gregory A. Weiss\*

## **Table of Contents:**

| PCR conditions for generating the ShuA loop deletion or alanine-substitution variants    | 2   |
|------------------------------------------------------------------------------------------|-----|
| Table SI 1. Oligonucleotide sequences                                                    | 2-5 |
| SI Figure 1. Functional phage-displayed wild-type ShuA requires the detergent LDAO.      | 6   |
| Figure SI 2. Phage-based ELISAs of peptide displayed ShuA Loop 7.                        | 7   |
| Figure SI 3. Phage-based ELISAs of phage-displayed wild-type ShuA treated with 4M urea.  | 8   |
| Figure SI 4. Phage-based ELISAs of ShuA extracellular loop deletion variants.            | 9   |
| Figure SI 5. Functional ShuA extracellular loop deletion variants displayed on the phage | 10  |
| surface.                                                                                 |     |
| Figure SI 6. SDS-PAGE analysis of TonB.                                                  | 11  |
| Figure SI 7. SDS-PAGE analysis of met-hemoglobin.                                        | 11  |

PCR conditions for generating the ShuA loop deletion or alanine-substitution variants

One of the following DNA templates (~50 ng) was used to generate the ShuA loop deletion or alanine-substituted variants for phage display or protein expression: pEShuA<sup>18</sup>, PCR products containing overlapping regions of the ShuA gene with the mutation of interest, or phagemid DNA encoding a ShuA extracellular variant. Platinum DNA Polymerase (Invitrogen) was used according to the manufacturer's specifications with the oligonucleotides listed in Table SI 1 and the following PCR thermal cycling conditions: 1 cycle of 2 min at 98 °C, followed by 30 cycles of 1 min at 98 °C, 1 min at 60 °C, and 2 min at 68 °C, and finishing with 5 min incubation at 68 °C.

| Oligonucleotide | DNA Sequence (5' to 3')                 | Resulting    |
|-----------------|-----------------------------------------|--------------|
| Label           |                                         | ShuA variant |
| OL_L1_Sb_F      | TCG TGT CTT TGG TAC TGG CGG CAC GGG     | Ala-L1       |
|                 | GGC CGC GAG CCT GGG ATT AGG CGC GAG     |              |
|                 | CGC GTT                                 |              |
| OL L1 Sb R      | AAC GCG CTC GCG CCT AAT CCC AGG CTC     | Ala-L1       |
|                 | GCG GCC CCC GTG CCG CCA GTA CCA AAG     |              |
|                 | ACA CGA                                 |              |
| OL L2 Sb F      | TTG TGG CCT GGT CCA GTC GCG ATC GGG     | Ala-L2       |
|                 | GTG ATG CGG CCG CGG CCG CTG CAG CAG     |              |
|                 | CCG CGG CGA ATG ACG AGT CCA TTA ATA     |              |
|                 | ACA TGC T                               |              |
| OL L2 Sb R      | AGC ATG TTA TTA ATG GAC TCG TCA TTC GCC | Ala-L2       |
|                 | GCG GCT GCT GCA GCG GCC GCG GCC GCA     |              |
|                 | TCA CCC CGA TCG CGA CTG GAC CAG GCC     |              |
|                 | ACA A                                   |              |
| OL L3 Sb F      | TAC AAC AAC GAC GCG CGT GAA CCA AAA     | Ala-L3       |
|                 | AAT GCG GCG GCC GCA GCG GCT GCG GCA     |              |
|                 | GCC GCC AAC CCG ATG GTT GAT CGT TCA     |              |
|                 | ACA ATT CAA                             |              |
| OL L3 Sb R      | TTG AAT TGT TGA ACG ATC AAC CAT CGG     | Ala-L3       |
|                 | GTT GGC GGC TGC CGC AGC CGC TGC GGC     |              |
|                 | CGC CGC ATT TTT TGG TTC ACG CGC GTC GTT |              |
|                 | GTT GTA                                 |              |
| OL L4 Sb F      | GAA GTC CGT ATT AAT GCG CAA AAC GCA     | Ala-L4       |
|                 | GCG GCA GCC GGC GAG TAT CGT GAA CAG     |              |
|                 | ATA ACA                                 |              |

 Table SI 1. Oligonucleotide sequences

| OL_L4_Sb_R  | TGT TAT CTG TTC ACG ATA CTC GCC GGC TGC                                                                                          | Ala-L4  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|---------|
| OL_L5_Sb_F  | TGA GTA TTA TCG TCA GGA ACA ACA TCC<br>GGG CGG CGC GGC GGC GGC GGC ACC GCA<br>AGC AAA AAT CGA TTT TAG CTC                        | Ala-L5  |
| OL_L5_Sb_R  | GAG CTA AAA TCG ATT TTT GCT TGC GGT<br>GCG GCC GCC GCC GCG CCG CCC GGA TGT<br>TGT TCC TGA CGA TAA TAC TCA                        | Ala-L5  |
| OL_L6_Sb_F  | AGT TAT CGC GGT AGC AGT GAC GGT GCG<br>AAA GAT GTT GAT GCC GAC AAA TGG TCA<br>TCT                                                | Ala-L6  |
| OL_L6_Sb_R  | AGA TGA CCA TTT GTC GGC ATC AAC ATC TTT<br>CGC ACC GTC ACT GCT ACC GCG ATA ACT                                                   | Ala-L6  |
| OL_L7A_Sb_F | TGC CCA GGC ATT CCG CGC CCC GAC GGC<br>GGC CGC AGC GGC AGC CGC GGC TGC GGC<br>CGC CGC GGC GGG TCG CTT CTA TAC CAA<br>CTA TTG GGT | Ala-L7A |
| OL_L7A_Sb_R | ACC CAA TAG TTG GTA TAG AAG CGA CCC<br>GCC GCG GCG GCC GCA GCC GCG GCT GCC<br>GCT GCG GCC GCC GTC GGG GCG CGG AAT<br>GCC TGG GCA | Ala-L7A |
| OL_L7B_Sb_F | ACG ATT CTA AGC ACT TCT CGA TTG CGG<br>CCG CCG CAG CCG CCG CGG CGG CAG<br>CCG CGG CCT TAC GTC CGG AAA CTA ACG<br>AAA CTC AGG     | Ala-L7B |
| OL_L7B_Sb_R | CCT GAG TTT CGT TAG TTT CCG GAC GTA AGG<br>CCG CGG CTG CCG CCG CCG CGG CGG CTG<br>CGG CGG CCG CAA TCG AGA AGT GCT TAG<br>AAT CGT | Ala-L7B |
| OL_L8_Sb_F  | AAG GAT TAC ATC TCC ACG ACC GTC GAT<br>GCC GCG GCG GCG ACG ACT ATG TCG TAT<br>AAC GT                                             | Ala-L8  |
| OL_L8_Sb_R  | ACG TTA TAC GAC ATA GTC GTC GCC GCC<br>GCG GCA TCG ACG GTC GTG GAG ATG TAA<br>TCC TT                                             | Ala-L8  |
| OL_L9_Sb_F  | TAA CCG TAC CCG CGG CAA AGA CAC CGA<br>TGC CGC GGC AGC GGC GGC CAG CAT TAA<br>CCC GGA TAC CGT TAC CA                             | Ala-L9  |
| OL_L9_Sb_R  | TGG TAA CGG TAT CCG GGT TAA TGC TGG<br>CCG CCG CTG CCG CGG CAT CGG TGT CTT TGC<br>CGC GGG TAC GGT TA                             | Ala-L9  |
| OL_L10_Sb_F | TTC TCT GTT GGG TGG GTT GGT ACG TTT GCC<br>GAT CGC GCA GCA GCG GCC GCC GCG GCT<br>GCC GCG GCG GCA CCA GGC TAT GGC GTG<br>AAT GAT | Ala-L10 |
| OL_L10_Sb_R | ATC ATT CAC GCC ATA GCC TGG TGC CGC                                                                                              | Ala-L10 |

|              | CGC GGC AGC CGC GGC GGC CGC TGC TGC GCG ATC GGC AAA CGT ACC AAC CCA CCC                                           |             |
|--------------|-------------------------------------------------------------------------------------------------------------------|-------------|
| OL_L11_Sb_F  | AAC AGA GAA<br>ACT ACT TTG GTG TTG GGT AAC GCT GCC<br>GCC GCG GCG GCC GCG GCG GCG GCA GCC                         | Ala-L11     |
|              | GCC GCA GCG GCT GGT CGT AAC GGA AAA<br>ATT TTC GTG                                                                |             |
| OL_L11_Sb_R  | CAC GAA AAT TTT TCC GTT ACG ACC AGC<br>CGC TGC GGC GGC TGC CGC CGC CGC GGC<br>CGC CGC GGC GGC AGC GTT ACC CAA CAC | Ala-L11     |
| OL_L1_Del_F  | T CGT GTC TTT GGT ACT GGC GGC ACG GGG<br>AGC CTG GGA TTA GGC GCG AGC GCG TTT                                      | $\Delta L1$ |
| OL_L1_Del_R  | AAA CGC GCT CGC GCC TAA TCC CAG GCT<br>CCC CGT GCC GCC AGT ACC AAA GAC ACG AA                                     | $\Delta L1$ |
| OL_L2_Del_F  | TTG TGG CCT GGT CCA GTC GCG ATC GGG<br>GTG ATA ATG ACG AGT CCA TTA ATA ACA<br>TGC T                               | ΔL2         |
| OL_L2_Del_R  | AGC ATG TTA TTA ATG GAC TCG TCA TTA TCA<br>CCC CGA TCG CGA CTG GAC CAG GCC ACA A                                  | $\Delta L2$ |
| OL_L3_Del_F  | TAC AAC AAC GAC GCG CGT GAA CCA AAA<br>AAT AAC CCG ATG GTT GAT CGT TCA ACA<br>ATT CAA                             | ΔL3         |
| OL_L3_Del_R  | TTG AAT TGT TGA ACG ATC AAC CAT CGG<br>GTT ATT TTT TGG TTC ACG CGC GTC GTT GTT<br>GTA                             | ΔL3         |
| OL_L4_Del_F  | TTG GTC GGA AGT CCG TAT TAA TGC GCA<br>AAA CGG CGA GTA TCG TGA ACA GAT AAC A                                      | $\Delta L4$ |
| OL_L4_Del_R  | TGT TAT CTG TTC ACG ATA CTC GCC GTT TTG<br>CGC ATT AAT ACG GAC TTC CGA CCA A                                      | $\Delta L4$ |
| OL_L5_Del_F  | TGA GTA TTA TCG TCA GGA ACA ACA TCC GGG CGG CCC GCA AGC AAA AAT C                                                 | $\Delta L5$ |
| OL_L5_Del_R  | GAG CTA AAA TCG ATT TTT GCT TGC GG G<br>CCG CCC GGA TGT TGT TCC TGA CGA                                           | $\Delta L5$ |
| OL_L6_Del_F  | GAC AGT TAT CGC GGT AGC AGT GAC GGT<br>AAA GAT GTT GAT GCC GAC AAA TGG TCA<br>TCT CGT                             | ΔL6         |
| OL_L6_Del_R  | ACG AGA TGA CCA TTT GTC GGC ATC AAC<br>ATC TTT ACC GTC ACT GCT ACC GCG ATA ACT<br>GTC                             | ΔL6         |
| OL_L7A_Del_F | TAT TTG GCT CAT ATG CCC AGG CAT TCC GCG<br>GTC GCT TCT ATA CCA ACT ATT GGG TGC CA                                 | ΔL7A        |
| OL_L7A_Del_R | TGG CAC CCA ATA GTT GGT ATA GAA GCG<br>ACC GCG GAA TGC CTG GGC ATA TGA GCC<br>AAA TA                              | ΔL7A        |

| OL_L7B_Del_F   | TG TAT AAC GAT TCT AAG CAC TTC TCG ATT                                              | $\Delta L7B$                                                          |
|----------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| OL_L7B_Del_R   | AAA CCG TAC TCC TGA GTT TCG TTA GTT TCA                                             | $\Delta L7B$                                                          |
| OL_L8_Del_F    | AAG GAT TAC ATC TCC ACG ACC GTC GAT                                                 | ΔL8                                                                   |
| OL_L8_Del_R    | ACG TTA TAC GAC ATA GTC GTC GCC GCC                                                 | ΔL8                                                                   |
| OL_L9_Del_F    | TAA CCG TAC CCG CGG CAA AGA CAC CGA                                                 | ΔL9                                                                   |
| OL_L9_Del_R    | TGG TAA CGG TAT CCG GGT TAA TGC TAT                                                 | ΔL9                                                                   |
| OL_L10_Del_F   | TTC TCT GTT GGG TGG GTT GGT ACG TTT GCC                                             | ΔL10                                                                  |
| OL_L10_Del_R   | AAT CAT TCA CGC CAT AGC CTG GGC GAT<br>CGG CAA ACG TAC CAA CCC ACC CAA CAG          | ΔL10                                                                  |
| OL_L11_Del_F   | AGA A<br>ATG ACC ACT ACT TTG GTG TTG GGT AAC<br>GCT GGT CGT AAC GGA AAA ATT TTC GTG | ΔL11                                                                  |
| OL_L11_Del_R   | AGT<br>ACT CAC GAA AAT TTT TCC GTT ACG ACC<br>AGC GTT ACC CAA CAC CAA AGT AGT GGT   | ΔL11                                                                  |
| pM1155a_NsiI_F | AGC TTC ATG CAT GCG ATT ACA AGG ATG<br>ACG ACG AT                                   | For sub-cloning into the phage                                        |
| pM1155a_NcoI_R | ATC CTC CAC CAC TAG TAC CAT GGT ACC AT                                              | display vector<br>For sub-cloning<br>into the phage                   |
| pET22b_Msc1_F  | 5'-AGC CTG TGG CCA TGG CTA CTG AAA CCA<br>TGA CCG TTA CGG CAA                       | For sub-cloning<br>into the protein<br>expression                     |
| pET22b_XhoI_R  | 5'-TTG GCT CTC GAG CCA TTG ATA ACT CAC<br>GAA AAT TTT TCC GTT ACG A                 | vector<br>For sub-cloning<br>into the protein<br>expression<br>vector |

\*F and R designate forward and reverse primers, respectively.



SI Figure 1. Functional phage-displayed wild-type ShuA requires the detergent LDAO. Phage-displayed wild-type ShuA or STOP4 (negative control phage) were incubated in the prescence and absence of the detergent LDAO with immobilized A) anti-FLAG antibody ( $\alpha$ -FLAG), B) anti-ShuA antibody ( $\alpha$ -ShuA), or C) met-hemoglobin (met-Hb). Relative levels of the bound phage-displayed ShuA variants were quantified by anti-M13 antibody conjugated to HRP. Throughout this report, each data point represents the average of three replicates, and error bars indicate standard deviation around the mean.



**Figure SI 2. Phage-based ELISAs of a phage-displayed peptide, ShuA Loop 7.** Phagedisplayed ShuA L7 peptide, full-length ShuA alanine-substituted L7 variant (Ala-L7), wild-type ShuA (positive control phage), or STOP4 (negative control phage) were incubated with immobilized anti-ShuA antibody coated on microtiter plate wells. Relative levels of the bound phage-displayed ShuA variants and peptide were quantified by anti-M13 antibody conjugated to HRP. No binding was observed for phage-displayed ShuA Ala-L7 to the anti-ShuA antibody, but the phage-displayed peptide ShuA Loop 7 bound the immobilized target. Throughout this report, each data point represents the average of three replicates, and error bars indicate standard deviation around the mean.



**Figure SI 3. Phage-based ELISAs of phage-displayed wild-type ShuA treated with 4M urea.** Phage-displayed wild-type ShuA and STOP4 (negative control phage) were assayed for binding in the presence or absence of 4M urea. Following treatment with urea, the phage-displayed wild-type ShuA or STOP4 were purified from excess urea through a second PEG precipitation and incubated with the following immobilized targets: A) anti-ShuA antibody, **B**) met-Hemoglobin, or **C**) TonB. Relative levels of the bound phage-displayed ShuA were quantified by anti-M13 antibody conjugated to HRP. Phage-displayed wild-type ShuA treated with 4 M urea did not bind to the met-hemoglobin or TonB protein. However, binding is observed by urea-denatured, phagedisplayed wild-type ShuA to the immobilized anti-ShuA antibody. Throughout this report, each data point represents the average of three replicates, and error bars indicate standard deviation around the mean.



Figure SI 4. Phage-based ELISAs of ShuA extracellular loop deletion variants. To evaluate display levels, 50 nM of phage-displayed ShuA extracellular loop deletion variants,  $\Delta$ L2 through  $\Delta$ L11, or wild-type ShuA (positive control) were assayed for binding to immobilized anti-FLAG antibody, which can recognize a FLAG epitope fused to the N-terminus of the ShuA variants. **A**) Phage-displayed ShuA  $\Delta$ L5,  $\Delta$ L6v1,  $\Delta$ L7v1, and  $\Delta$ L11v1 demonstrated display levels similar to wild-type ShuA (WT) **B**) No or low display levels were observed for ShuA  $\Delta$ L6v2,  $\Delta$ L7v2, and  $\Delta$ L11v2 when one or two native amino acid residue(s) were removed as compared to wild-type ShuA (WT) and its loop deletion variants, ShuA  $\Delta$ L2,  $\Delta$ L3,  $\Delta$ L4,  $\Delta$ L9, and  $\Delta$ L10. Thus, this report focuses on the loop deletion variants that demonstrated similar display levels.



surface. Phage-displayed ShuA loop deletion variants,  $\Delta 1$  through  $\Delta L11$ , wild-type ShuA (positive control phage) or STOP4 (negative control phage) were incubated with immobilized **A** and **B**) anti-FLAG antibody ( $\alpha$ -FLAG), **C**, **D**, and **E**) anti-ShuA antibody ( $\alpha$ -ShuA), or **F**, **G**, **H**) methemoglobin (metHb). Relative levels of the bound phage-displayed ShuA variants were quantified by anti-M13 antibody conjugated to HRP. Throughout this report, each data point represents the average of three replicates, and error bars indicate standard deviation around the mean.

**Figure SI 6. SDS-PAGE analysis of TonB.** Eluted fractions of a 92 residue C-terminal fragment of TonB (residue 142 – 239) from *S. dysenteriae* were purified by size exclusion chromatography, and visually examined in a 12% Tris-glycine SDS-PAGE gel stained by Coomassie blue. **Lane L.** PageRuler Plus pre-



stained protein ladder (ThermoFisher Scientific). Lanes 1 - 9. Samples (15 µL) of the 2 mL fractions were collected through size exclusion chromatography. This purified TonB protein was coated on microtiter plates for TonB binding ELISAs with phage-displayed and detergent-solubilized ShuA variants, using conditions described above.

**Figure SI 7. SDS-PAGE analysis of met-hemoglobin.** A sample of met-hemoglobin purified from human red blood cells was visually examined in a 12% Tris-glycine SDS-PAGE gel stained by Coomassie blue. **Lane L**. PageRuler Plus pre-stained protein ladder **Lane 2**. Sample (5 μL) of 1 gm/mL met-hemoglobin. This protein sample was coated on microtiter plates for hemoglobin binding ELISAs with phage-displayed and detergent-solubilized ShuA variants, using conditions described above.

