
Text S1

1. Algorithm of our proposed pipeline

The instance-feature file (see main article and Table S1), containing 384 essential and 3120 non-

essential reaction-gene pairs (Ra_Gb) was given to the following algorithm. It is noteworthy to 

mention that, our methodology is not specific to only this problem of classification and hence, 

can be applied for classifying any other kinds of datasets. Further, 1000 randomized balanced 

datasets (equal number of positive and negative classes) were generated and given to the 

integrated pipeline.

Algorithm for choosing best feature combination (Part 1)

The following algorithm was used to choose best features from a total of 64 features:

// BD: Set of 1000 Balanced training Datasets

// TRF: Set of Top Ranking Features

// PM: Set of Performance Metrics (auROC)

// perf: Set of best performing metrics   

// BDtemp: Set of Balanced Datasets giving high performance

for i=1: length(BD)  

                 TRF[ ] = Features ranked (descending) using SVM-RFE

                 for j=1: length(TRF[ ])

                      PM[i][j] = auROC measured using SMO

                 end loop j

                 BFC[i] = best features combination set from PM[i][j] which gives best auROC

                 for k=1: length(BD)

                      BFC_BD[i][k] = performance metric with BFC[i] measured using  SMO

                 end loop k 

 end Loop i

 for m=1: length(BD)

   auROC[m] = sum(BFC_BD[m]) / length(BFC_BD[m]);

 end loop m
Sort (descending) auROC[ ]

Select Best feature combination set (BFCbest) which gives highest average performance 

(auROC[1])
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Algorithm for parameter optimization (Part 2)

Training with BFCbest (obtained from Part 1) and tuning complexity parameter C

C[ ] = {0.01, 0.1, 1, 10, 100};

for i = 1 : length(C[ ])

                for j = 1: length(BD)

                     PM[i][j] = performance metrics measured using SMO;      

                end loop j    

Sort (descending) PM[i] and choose corresponding BD[j]

perf[i] =  PM[1];  //  best auROC for C[i]

BDtemp[i] = BD[1]; // dataset giving best auROC for C[i]   

avePERF_C[i]=sum(PM[i])/length(PM[i]);      

end loop i 

Sort (descending) perf[ ] and choose corresponding BDtemp[ ] 

Sort (descending) avePERF_C[ ] and choose corresponding C[ ]

Output = Best feature combination, best penalty parameter, best dataset (BFCbest, Cbest, BDbest) which 

gives highest performance 

Algorithm for Model testing

The unbalanced instance-feature file again was given as the total master test set. The testing 

algorithm returns two results - 

1) Predictions from the best model (Cbest, BFCbest, BDbest) 

2) Predictions of the model (Cbest, BFCbest) with respect to the 1000 random datasets -

Given - Cbest, BFCbest

          for i=1: length(Ra_Gb)

                       count = 0;

for j=1: length(BD)

            if Ra_Gb[i] == “E” // “E” means essential

                        count=count+1;

     end if

   end loop j 

PercentagePrediction = [count / length(BD)]*100;

          End



2. Curated features for E. coli K-12 MG1655

Sequence-based, gene expression-based, metabolic network and flux coupled subnetwork based 

features was assembled for each reaction-gene combination within E. coli K-12 MG1655 

metabolism. Thus, a total of 64 features were obtained for each combination (Table A, Table 

S1).

Nucleotide content and coding sequence length - Previous studies showed that GC content of 

bacterial genomes were either correlated with environmental niche in which the bacterium 

survives or as a proxy for horizontally transferred genes.53 Thus, the underlying GC content 

within a considered genome can be an appropriate representative of gene essentiality. Frequency 

of A, T, G, and C nucleotides at the 3rd synonymous position of codons and percentage GC 

content at all the 3 codon positions in a gene and length of each coding sequence (A3, T3, G3, 

C3, GC1, GC2, GC3, CDSlen) were calculated using an in-house code. 

Codon usage - Codon usage was previously used as a predictor of protein abundance.54–56 

Abundant highly expressing proteins might have a functional importance in metabolism and 

hence, can be essential. Codon usage is also strongly associated to GC content within E. coli and 

is a distinctive signature between genomes.56–58 Codon usage features like Codon Adaptation 

Index (CAI),55 and Effective Number of Codons (ENC)57 were extracted using EMBOSS 

package version 6.6.0-1.59 Total Number of codons (Num_codons) in a coding sequence was 

calculated using an in-house code.

Homology based features - A gene might be more important if it is conserved across 

evolutionarily related organisms residing in different environments. In bacteria, essential genes 

were observed to be more evolutionarily conserved as compared to non-essential genes 

irrespective of the environment.60,61 Phyletic Retention (PR) is defined as the number of 

organisms in which ortholog of a given gene is present.8  For computing PR, protein orthologs 

amongst 710 bacterial genomes (leaving E. coli K-12 substr MG1655) available from the 2014 

update of the COG database36 was searched. An ortholog was defined such that, it is the only bi-

directional best hit of the query gene in an organism and possessed atleast 40% identity with the 

query gene along with an E-value cut-off 10-7. Bi-directional best hits for each gene were 

identified using BLAST version 2.2.26 along with the above parameters. Further, the number of 



homologs in the 710 genomes with respect to the hits obtained with different E-value cut-offs 

ranging from 10-3 to 10-30 (H3, H5, H7, H10, H20, H30) was also calculated 15. 

Peptide sequence features - Biased amino acid usage is a property of essential genes in bacterial 

genomes. The amino acid usage within a protein sequence is largely dependent on the 

physicochemical properties that an amino acid provides. In E. coli, proteins from essential genes 

might have specific structural properties important for its function.27 A total of 20 peptide 

sequence-based features with respect to the frequencies of the 20 amino acids for each protein 

related to a particular gene (Glyf, Metf, Alaf, Valf, Leuf, Ilef, Prof, Phef, Trpf, Tyrf, Asnf, Argf, 

Hisf, Gluf, Glnf, Serf, Thrf, Aspf, Cysf, Lysf) was calculated. Similarly, protein length is also an 

important factor for determining function of a gene in E. coli. Protein length and amino acid 

usage was calculated using EMBOSS package version 6.6.0-1.59 

Gene expression features - Essential genes tend to express at higher rates as compared to non-

essential genes across bacteria.45 To calculate gene expression based features, 101 microarray 

experimental samples (from 16 different studies given in Table B) for E. coli K-12 substr. 

MG1655 that were performed under different environmental stress conditions was collected. The 

microarray studies were curated from E. coli gene expression database.62 Microarray studies 

carried out on mutant strains was not considered, as our aim was to predict essential genes in a 

wild type strain, subject to an array of environmental conditions. Also, the microarray 

experiments related to gene expression based features were chosen such that it covers the 

expression profiles of genes under various environmental stress conditions to get a universal 

definition of gene irrespective of the environment. Average mRNA Expression of a gene 

(aveEXP) and mRNA Expression Fluctuation (mEF) which is the standard deviation of log2 

normalized gene expression values of the Cy3/Cy5 intensity ratio of each gene from the above 

samples were calculated. From previous studies, it was reported that a gene might be important if 

it co-regulated with many other genes.63  Hence, the Number of Genes with Similar Expression 

(NGSE), (number of gene pairs having a Pearson correlation coefficient: r < -0.8 and r > 0.8)15 

was also calculated. 

Reaction and Flux-coupled sub-network features - The E. coli iJO1366 metabolic network was 

transformed as a static undirected reaction network representation, in which each node represents 



an enzyme (reaction) and the edge signifying the connection between two reaction such that 

product of previous reaction is the substrate of the next reaction. Different commonly used 

network features that emphasize biological importance of an enzyme with respect to its position 

and connectivity to other enzymes in a network were calculated.64 A highly connected and 

central enzyme in biological networks is necessarily essential as it represents either a hub or 

bottleneck within the network.65 Each network feature would represent the importance of a 

reaction to interconvert substrates/products given by/to a subsequent reaction. Features like 

Degree Centrality (DC),14,15 Closeness Centrality (CC),14,15 Betweenness Centrality (BC),14,15 

Eccentricity Centrality (EC),65 Page Rank (PageRank),66 Eigenvector Centrality (EvC),15 

Modularity (M),67  Clustering Coefficient (ClustCoef),14,15  Number of triangles 

(Num_triangles),68 Hub (HS)69 and Authority (AS)69 Scores were calculated for the reaction 

network using Gephi version 0.8.670. The aforementioned network topological features were 

calculated for the flux-coupled sub-graph as well.

Table A. Curated features for E. coli K-12 MG1655

Feature  Name Description
# 

Features

Sequence Features

A3, T3, G3, C3, GC1, GC2, GC3, CDSlen, CAI, ENC, 

Num_Codon, Glyf, Metf, Alaf, Valf, Leuf, Ilef, Prof, Phef, 

Trpf, Tyrf, Asnf, Argf, Hisf, Gluf, Glnf, Serf, Thrf, Aspf, Cysf, 

Lysf, PL, PR, H3, H5, H7, H10, H20, H30

39

Expression features NGSE, aveEXP, mEF 3

Network features

Reaction Network (RN)

RN_DC, RN_EC, RN_CC, RN_ BC, RN_EvC, RN_ HS, 

RN_AS, RN_PageRank, RN_ClustCoeff, 

RN_Num_triangles, RN_M

11

Flux Coupled Sub 

Network (FCA)

FCA_DC, FCA_ EC, FCA_CC, FCA_BC, FCA_EvC, 

FCA_HS, FCA_AS, FCA_PageRank, FCA_ClustCoeff, 

FCA_Num_triangles, FCA_M

11



Experiments curated for calculating gene expression-based features - Gene expression based 

features like average mRNA Expression (aveEXP), mRNA Expression Fluctuation (mEF) and the gene 

co-expression feature NGSE were calculated from 16 microarray experiments.

Table B. Microarray experiments curated for E. coli K-12 substr. MG1655 from E. coli gene 

expression database

Accession Conditions # Samples References

GSE1730
mRNA abundance from wild type grown in LB or 

M9
12 71

GSE1981
Gene expression profiles of E.coli grown in LB and 

minimal medium (DM) at OD 600 =1
3 72

GSE4344
Transcript abundance in LB and L9 at 300 C and OD 

600=0.8
4 73

GSE4359
Responses of genes over time as they recover from 

one stationary phase in rich media at OD 0.4
6 74

GSE4363
Responses of genes over time as they recover from

one stationary phase in rich media at OD 0.4
11 74

GSE4364
Responses of genes over time as they recover from

one stationary phase In rich media at OD 0.4
7 74

GSE4370
Responses of genes over time as they recover from

one stationary phase in rich media at OD 0.4
7 74

GSE4371
Responses of genes over time as they recover from

one stationary phase in rich media at OD 0.4
7 74

GSE4373
Responses of genes over time as they recover from

one stationary phase in rich media at OD 0.4
6 74

GSE4374
Responses of genes over time as they recover from

one stationary phase in rich media at OD 0.4
6 74

GSE4375
Responses of genes over time as they recover from

one stationary phase in rich media at OD 0.4
6 74

GSE4376
Responses of genes over time as they recover from

one stationary phase in rich media at OD 0.4
6 74

GSE4380
Responses of genes over time as they recover from

one stationary phase in rich media at OD 0.4
6 74

GSE4706 Response and adaptation to growth with low glucose 6 75



concentration

GSE4735
Transcriptome dynamic analysis during transition 

from aerobic and anaerobic conditions
4 76

GSE6644
Transcriptome dynamic analysis during transition 

from aerobic and anaerobic conditions
4 76

3. Flux coupling analysis

Flux coupling analysis (FCA) is a flux-based optimization procedure that calculates reaction 

subsets that are either coupled with each other via flux or represent a set of block reactions, given 

specific environmental exchange constraints.31,32 Let v1 and v2 be fluxes through reactions R1 and 

R2. Keeping either v1 or v2 as objective functions to be optimized, if a non-zero flux in v1 

imposes a non-zero flux in v2 or vice versa, the two reaction fluxes are termed to be coupled with 

each other. If zeroing the flux of one reaction does not produce any effect on any other reaction 

within the metabolic network, then the reaction is termed to be uncoupled. If maximum or 

minimum of a particular reaction flux objective equals zero, then the reaction is termed to be 

blocked. Considering v1 or v2 to be objective functions, the coupled reactions can be classified 

into:

1) Fully coupled: If v1 = 0 implies v2 = 0 and if v2 = 0 implies v1 = 0, and v1 = v2, then the 

reaction pair is fully coupled.

2) Directionally coupled: If v1 = 0 implies v2 = 0 but if v2 = 0 does not imply v1 = 0, then 

the reaction pair is directionally coupled.

3) Partially coupled: If v1 = 0 implies v2 = 0 and if v2 = 0 implies v1 = 0, and v1 ≠ v2, then 

the reaction pair is partially coupled. 

Performing FCA on the iJO1366 metabolic network, 1527 fully, 41049 directionally, and 7438 

partially coupled reaction pairs and 865 blocked reactions were obtained. As our aim was to find 

a flux-coupled subnetwork, the nature/property of each reaction pair can be represented within an 

adjacency matrix (1718 x 1718) where each reaction pair can be given a value of 1 or 0 

corresponding to whether they are either coupled or not. Here, we give a value of 0 to both 

uncoupled and blocked reaction pairs. The adjacency matrix represents a flux-coupled subgraph, 

which can be used to extract biologically relevant topological features dependent on predicted 

physiological flux relationships. 



4. Definitions of Performance metrics

In our data set, two classes essential (positive class) and non-essential (negative class) genes are 

considered. The classifier has four outcomes: 

True positive (TP): Number of essential instances correctly predicted by the classifier.

False positive (FP): Number of non-essential instances wrongly predicted as essential.

True negative (TN): Number of non-essential instances correctly predicted by the classifier.

False negative (FN): Number of essential instances wrongly predicted as non-essential.

With respect to the above model outcomes, a set of model performance metrics can be calculated 

(See Table 1 of Main Article for formulae). The metrics are defined as,

True Positive Rate (TPR) or Sensitivity: It is defined as the proportion of positive (essential) 

instances predicted correctly by the model.

False Positive Rate (FPR): It is defined as the proportion of negative (non-essential) instances 

predicted as positive by the model.

Precision: It determines the measure of correctness (i.e., how many instances predicted as 

essential class really belongs to positive class.                                     .

Recall:  It measures the proportion of essential instances correctly predicted by the model.

F-measure: This performance metric is defined as the harmonic mean between precision and 

recall. A high value of F-measure suggests that the predictive performance better on essential 

class.

Matthews Correlation Coefficient (MCC): This performance metric was proposed by biochemist 

Brain W. Matthews in 1975.77 This measure is less influenced by imbalanced data sets. 

Area under Receiver Operating Characteristic curve (auROC): Area which is calculated from 

ROC curve. Wilcoxon-Mann-Whitney test statistic is used to calculate auROC.



5. Comparison with other available methods – Proof of training set independence

Apart from Hwang et al., 2009,14 our strategy was also compared with other recent supervised 

classification studies on essential gene identification.16,33 To compare the performance of our 

strategy with these classification methods, training (Escherichia coli genes) and test dataset 

(Bacillus subtilis genes) considered in these studies were provided to our methodology for 

generating a best SVM model and for further testing, respectively. The best model generated 

from our methodology using the previously available training dataset (consisting of sequence 

features of E. coli genes) was further tested with test dataset (sequence-based features of B. 

subtilis genes) of the available methods.

Testing results in the form of auROC and precision, indicate that the best model 

generated through our strategy outperforms both the available supervised classification methods 

(Table C). The achieved sensitivity and specificity from our methodology is the highest 

suggesting an enhanced model performance, irrespective of the given input training dataset. 

Table C. Comparison of our proposed strategy with methods proposed by Song et al. 

201433 and Deng et al. 201116 

Performance metric Our Method Song et al. 201433 Deng et al. 201116

auROC 0.966 0.930 0.800

Precision 0.970 0.730 0.540

6. List of selected features

After applying SVM-RFE algorithm for feature selection, combinations of 26 features that give 

highest model performance were shortlisted. The ranks (contributions to classification) of these 

features based on SVM-RFE are given in Table D. Also, after performing Wilcoxon rank-sum 

test, 21 features out of the total 26 have significantly different median values between essential 

and non-essential genes. P-values calculated by comparing the distributions of features between 

essential and non-essential classes (Fig. 3 of Main Article) are also indicated in Table D.



Table D: The 26 selected best features

Feature Name Rank (SVM-RFE) P-value

PR 1 2.2E-16

H3 2 2.2E-16

RN_CC 3 2.2E-16

H5 4 2.2E-16

Alaf 5 0.000052

Argf 6 0.00996

H7 7 2.2E-16

CAI 8 0.2447*

FCA_AS 9 2.2E-16

FCA_Num_triangles 10 2.2E-16

FCA_Hub 11 2.2E-16

Leuf 12 0.2669*

RN_BC 13 0.000309

GC1 14 2.2E-16

T3 15 1.35E-10

NGSE 16 0.2399*

Glyf 17 2.2E-16

Valf 18 0.5293*

Serf 19 0.009535

FCA_ClusteringCoef 20 3.08E-12

Phef 21 2.21E-15

C3 22 1.65E-05

Gluf 23 0.001545

GC2 24 0.2302*

Asnf 25 2.2E-16

FCA_BC 26 2.93E-15

* P-values insignificant at a threshold of P < 0.05
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