Synthetic data generation and quality check

1. SynTReN parameter settings

Fig S1-1. SynTReN simulated gene networks (*background* left, *foreground* right) and true regulators. True regulators are highlighted in yellow and listed in Table S1-1.

LYS14			
GCN4			
DAL81_DAL82			
GLN3			
BAS1_PHO2			
CBF1			
PDR1			
PHO2			
SDS3			
ALPHA2			
SNF2_SWI1			
HAP3			
SWI3			
TUP1			
UME6			
HAP2_HAP4			
HAP2_3_4_5			

Table S1-1. True regulat	ors of the synthet	ic data (veast gene	regulatory network)
Table of The Legalat		ie data (Jeast Serie	

Parameter	Acronym	Range
number of replicates in	ngroup	5
each experimental group		
number of replicates per	nreplicate	2,10,20,50,100
group		
biological noise level in	bn	0.1, 0.2, 0.3, 1.0
gene expressions		
foreground gene number	-	100
background gene number	-	100
true regulator number	-	17

Table S1-2. SynTReN settings for the synthetic data generation.

2. Quality check

AR (average correlation) is defined as the Pearson correlation coefficient (PCC) of the expressions across samples E_{g_i} and the sample-wise average expressions E, where $E_g = (E_{g1}, E_{g2}, ..., E_{gS})$, S is the sample size, $E = (E_1, E_2, ..., E_S)$, $E_s = \frac{1}{G} \sum_{g} E_{gs}$, G is gene number.

First, we tested the coexpression levels of the *foreground* using AR (Fig S1-2). Generally the *foreground* exhibits positive ARs, which fades gradually as the biological noise level rises. In comparison, the *background* genes do not show AR significantly deviating from zero. We hence regarded the *foreground* regulated genes as a single module and the *background* as false regulators.

Second, we checked noise levels of the *background* and *foreground* using the coefficient of variance (CV). As shown Fig S1-3, both have increased CVs as noise level rises. Specifically, in *foreground* (Fig S1-3A), the monotony of the CV-noise increment is restricted to the same *nreplicate* group (e.g. *nreplicate* = 20 or 100), and not preserved across multiple *nreplicate* groups; this is on the contrary to CVs in *background* (Fig S1-3B). This reflects SynTReN's limitation in controlling appropriately the *foreground* noise across different replicate groups. We also observed that the CVs of true regulators do not increase in correspondence to the noise levels as specified across *nreplicate* groups (Fig S1-4). These limitations reflect the fact that SynTReN cannot fully control expression noise, which may explain our observation of a few exceptions in comparisons of LemonTree performances when we varied replicate numbers or noise levels. Despite these limitations, our AR/CV profiling of the synthetic data confirms that this data simulator does offer a level of control on correlated input to output and hence warrants to be a reasonable LemonTree benchmark.

Fig S1-2. ARs of the *foreground* **and** *background* **networks.** (A) *foreground*. (B) *background*. *x*-axis *nreplicate*, *y*-axis AR, colors *bn*.

Fig S1-3. CVs of the *foreground* **and** *background* **networks.** (A) *foreground*. (B) *background*. *x*-axis *nreplicate*, *y*-axis CV, colors *bn*.

Fig S1-4. CVs of the true regulators in the *foreground* **network.** *x*-axis *nreplicate*, *y*-axis CV, colors *bn*.