Supporting Information

Proximity aptasensor for protein detection based on an enzyme-free

amplification strategy

Dawei Yang,^a Yuguo Tang,^a Zhenzhen Guo,^a Xifeng Chen^{ab} and Peng Miao^{*a}

^a CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and

Technology, Chinese Academy of Sciences, Suzhou 215163, China

^b Tianjin Guoke Jiaye Medical Technology Development Co., LTD, Tianjin, 300399, China

^{*} Corresponding author. Tel.: +86 512 69588279; Fax: +86 512 69588283.

E-mail address: miaopeng@sibet.ac.cn (P. Miao)

Experimental

Materials and chemicals

PDGF-BB was received from Pepro Tech (USA). Bovine serum albumin (BSA), transglutaminase (TG), fibrinogen, hexaammineruthenium (III) chloride $([Ru(NH_3)_6]^{3+}),$ 6-mercapto-1-hexanol (MCH) and tris (2-carboxyethyl) phosphine hydrochloride (TCEP) were purchased from Sigma-Aldrich Chemical Co. Ltd (USA). Other reagents were of analytical grade and used directly without further purification. All solutions were prepared using ultrapure water purified by a Milli Q system (USA). DNA immobilization buffer: 10 mM Tris-HCl buffer (pH 7.4) containing 1 mM EDTA, 0.1 M NaCl, and 10 µM TCEP. Reaction buffer: phosphate buffered saline (8 mM Na₂HPO₄, 2 mM NaH₂PO₄, pH 7.4) with 140 mM NaCl and 5 mM MgCl₂. Differential pulse voltammetry electrolyte buffer: 10 mM Tris-HCl (pH 7.4) with 50 μ M [Ru(NH₃)₆]³⁺ (pH 7.4). Electrochemical impedance spectroscopy electrolyte buffer: 5 mM $Fe(CN)_6^{3-/4-}$ with 1 M KNO₃. DNA oligonucleotides were synthesized by Sangon Biotechnology Co. Ltd. (Shanghai, China) with the sequences shown in Table S2.

Electrode treatment

The substrate gold electrode (diameter 3.0 mm) was soaked in piranha solution (H₂SO₄: 30% $H_2O_2 = 3:1$) for 5 min to eliminate the adsorbed organic matter, and then rinsed with pure water. After that, the electrode was abraded with sand papers successively and then polished to mirror smoothness with alumina powder of various particle sizes (1.0 and 0.3 µm) on microcloth. After the electrode was sonicated for 5 min in both ethanol and water, it was electrochemically activated in 0.5 M H₂SO₄ until a stable cyclic voltammogram was achieved. The electrode with DNA self-assembly

monolayer (SAM) was then obtained by the incubation with 1.0 μ M Initiator DNA for 16 h at room temperature, followed by a 1 h treatment with an aqueous solution of 1 mM MCH to obtain well-aligned DNA monolayers.

Electrochemical detection

The DNA modified electrode was incubated with 0.5 μ M of Aptamer 1 for 1 h at 25 °C, followed by the incubation with 0.5 μ M Aptamer 2 mixed with different concentrations of protein for 1 h at 37 °C. In the end, the electrode was treated with 0.05 μ M Reporter DNA, 1.0 μ M H1 and 1.0 μ M H2 before the following electrochemical measurements on CHI660D Electrochemical Analyzer (CH Instruments, China). A conventional three electrode system was employed, consisted of a saturated calomel electrode (SCE) as the reference electrode, a platinum wire as the counter electrode, and a gold electrode as the working electrode. The data were obtained from at least three times of repetition of independent experiments, and error bars were shown in the figures.

References

- 1. R. Y. Lai, K. W. Plaxco and A. J. Heeger, Anal. Chem., 2007, 79, 229-233.
- 2. Y. B. Li, S. Liu, Z. K. Zhao, Y. E. Zheng and Z. R. Wang, *Talanta*, 2017, **164**, 196-200.
- 3. L. M. Guo, L. H. Hao and Q. Zhao, Anal. Bioanal. Chem., 2016, 408, 4715-4722.
- Y. Huang, X. M. Nie, S. L. Gan, J. H. Jiang, G. L. Shen and R. Q. Yu, *Anal. Biochem.*, 2008, 382, 16-22.
- 5. J. C. He, G. K. Li and Y. L. Hu, Anal. Chem., 2015, 87, 11039-11047.
- D. Zhu, R. X. Yang, Y. P. Tang, W. Li, Z. Y. Miao, Y. Hu, J. Chen, S. Yu, J. Wang and C. Y. Xu, *Biosens. Bioelectron.*, 2016, **85**, 429-436.

- Z. H. Zhang, C. P. Guo, S. Zhang, L. H. He, M. H. Wang, D. L. Peng, J. F. Tian and S. M. Fang, *Biosens. Bioelectron.*, 2017, 89, 735-742.
- 8. K. J. Huang, H. L. Shuai and J. Z. Zhang, *Biosens. Bioelectron.*, 2016, 77, 69-75.

Techniques	Strategies	Detection	Def
		limit (pg/mL)	Kei.
DPV	Aptamer based sensor	1250	1
Fluorescent sensor	Binding induced strand displacement	90	2
	amplification		Z
Colorimetric sensor	Rolling circle amplification	77.5	3
Square wave	aptamer-primed polymerase	10	4
voltammetry	amplification	18	4
SERS	magnetic chitosan and silver/chitosan	3.0	5
	nanoparticles	5.2	5
Fluorescent sensor	Aptamer macroarray on a	6.7	6
	nanoplasmonic substrate		0
EIS	reduced graphene oxide@silver	0.82	7
	nanocluster@aptamer		,
DPV	graphene composites and exonuclease	0.5	8
	III-aided amplification		
DPV	proximity aptasensor	0.3	this work

 Table S1 Comparison of the proposed PDGF-BB biosensor with other existing methods.

Name	Sequence (5'-3')	
Initiator DNA	ACATACAATAGATCGC-(CH2)6-SH	
Aptamer 1	CGGATCTATTGTATCACATATTTTTTTTTTTTTTTTTTT	
	GTAGAGCATCACCATGATCCTG	
Aptamer 2	CAGGCTACGGCACGTAGAGCATCACCATGATCCTGTTTTTTTT	
	TTATACAGATACAATAGATC	
Reporter DNA	GCGATCTATTGTATGTTTTAGCTTATCAGACTGATGTTGA	
H1	ATCAGACTGATGTTGATGAAACTCAACATCAGTCTGATAAGCTA	
H2	GTTTCATCAACATCAGTCTGATTAGCTTATCAGACTGATGTTGA	

Table S2 List of DNA sequences used in the study.

Fig. S1 Optimization of the concentrations of Aptamer 1 and 2.

Fig. S2 Optimization of the concentrations of H1/H2.

Fig. S3 Optimization of the incubation temperature (17 °C, 27 °C, 37 °C, 47 °C, 57 °C).

Fig. S4 Optimization of the incubation time of the protein (15 min, 30 min, 60 min, 90 min, 120 min).