Design, synthesis, crystal structure and fungicidal activity of (E)-5-

(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one

analogues

Dongyan Yang, Chuan Wan, MengMeng He, Chuanliang Che, Yumei Xiao, Bin Fu, and Zhaohai Qin*

College of Science, China Agricultural University, Beijing 100193, China

Table of Contents

¹ H NMR, ¹³ C NMR and HRMS spectrum of title compounds	S2
Single crystal X-Ray data for compound 5-09	
\$38	

¹H NMR,¹³C NMR and HRMS spectrum of title compounds

Data for (E)-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**4**): yield 81 %; white solid; mp 146 °C; ¹H NMR (300 MHz, DMSO) δ 11.63 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.42 (dt, *J* = 7.6, 3.8 Hz, 1H), 7.32 (t, *J* = 7.1 Hz, 1H), 7.22 (d, *J* = 7.7 Hz, 1H), 5.19 (s, 2H), 3.90 (s, 3H).¹³C NMR (75 MHz, DMSO) δ 168.42, 136.45, 130.44, 130.11, 126.53, 125.92, 124.63, 76.08, 62.52. HRMS (ESI) *m/z* calcd for $C_{10}H_{10}N_2O_3$ (M+H)⁺ 207.0764, found 207.0765.

 $^1\rm H$ NMR (300 MHz, DMSO) δ 11.63 (s, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.42 (dt, J = 7.6, 3.8 Hz, 1H), 7.32 (t, J = 7.1 Hz, 1H), 7.22 (d, J = 7.7 Hz, 1H), 5.19 (s, 2H), 3.90 (s, 3H).

Data for (E)-5-(methoxyimino)-3-propyl-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-01**). White crystal; yield, 52%; mp: 83-85°C. ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.31 (m, 2H), 7.13 (d, *J* = 7.7 Hz, 1H), 5.23 (s, 2H), 4.08 (s, 3H), 3.84 – 3.53 (m, 2H), 1.80 (tt, *J* = 14.3, 7.1 Hz, 2H), 1.01 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.27, 152.38, 135.28, 130.84, 129.60, 126.24, 124.86, 124.60, 74.26, 62.62, 47.50, 19.90, 10.93. HRMS (ESI) *m/z* calcd for C₁₃H₁₆N₂O₃ (M+H)⁺ 249.1234, found 249.1234.

Data for (E)-3-butyl-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-02**): yield 57 %; white solid; mp 54-55 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.88 – 7.71 (m, 1H), 7.40 (ddd, J = 20.1, 9.9, 3.9 Hz, 2H), 7.13 (d, J = 7.7 Hz, 1H), 5.24 (s, 2H), 4.09 (s, 3H), 3.81 – 3.62 (m, 2H), 1.77 (dt, J = 15.0, 7.6 Hz, 2H), 1.44 (dq, J = 14.7, 7.3 Hz, 2H), 1.00 (t, J = 7.3 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 167.23, 152.38, 135.28, 130.86, 129.59, 126.24, 124.88, 124.59, 74.28, 62.62, 45.69, 28.59, 19.68, 13.40. HRMS (ESI) m/z calcd for C₁₄H₁₈N₂O₃ (M+H)⁺ 263.1390, found 263.1391.

Data for (E)-5-(methoxyimino)-3-pentyl-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-03**): yield 69 %; colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.77 – 7.66 (m, 1H), 7.41 – 7.18 (m, 2H), 7.06 (d, *J* = 7.5 Hz, 1H), 5.16 (s, 2H), 4.00 (s, 3H), 3.70 – 3.54 (m, 2H), 1.84 – 1.60 (m, 2H), 1.45 – 1.19 (m, 4H), 0.88 (t, *J* = 6.8 Hz, 3H).¹³C NMR (75 MHz,CDCl₃) δ 167.05, 152.39, 135.29, 130.71, 129.55, 126.13, 124.76, 124.63, 74.16, 62.48, 45.76, 28.47, 26.12, 21.91, 13.54. HRMS (ESI) *m/z* calcd for C₁₅H₂₀N₂O₃ (M+H)⁺ 277.1547, found 277.1547.

Data for (E)-3-hexyl-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-04**): yield 75 %; colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 7.6 Hz, 1H), 7.40 – 7.16 (m, 2H), 7.04 (d, *J* = 7.6 Hz, 1H), 5.14 (s, 2H), 3.98 (s, 3H), 3.71 – 3.48 (m, 2H), 1.68 (dd, *J* = 14.2, 7.1 Hz, 2H), 1.39 – 1.20 (m, 6H), 0.86 (t, *J* = 6.6 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 167.06, 152.38, 135.29, 130.71, 129.54, 126.12, 124.77, 124.62, 74.17, 62.46, 45.79, 31.02, 26.39, 26.00, 22.07, 13.59.HRMS (ESI) *m/z* calcd for C₁₆H₂₃N₂O₃ (M+H)⁺ 291.1703, found 291.1702.

Data for (E)-3-heptyl-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-05**): yield 73 %; colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.60 (m, 1H), 7.41 – 7.15 (m, 2H), 7.03 (d, J = 7.6 Hz, 1H), 5.13 (s, 2H), 3.98 (s, 3H), 3.74 – 3.51 (m, 2H), 1.79 – 1.60 (m, 2H), 1.41 – 1.18 (m, 8H), 0.85 (t, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.03, 152.38, 135.29, 130.69, 129.51, 126.10, 124.77, 124.61, 74.16, 62.43, 45.76, 31.23, 28.49, 26.43, 26.28, 22.13, 13.64. HRMS (ESI) m/z calcd for C₁₇H₂₅N₂O₃ (M+H)⁺ 305.1860, found 305.1864.

Data for (E)-3-allyl-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-06**): yield 34 %; white solid; mp 62-63 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.38 (dq, *J* = 14.2, 6.4 Hz, 2H), 7.13 (d, *J* = 7.5 Hz, 1H), 5.96 (ddt, *J* = 16.5, 10.1, 6.3 Hz, 1H), 5.38 (ddd, *J* = 13.6, 11.1, 1.1 Hz, 2H), 5.24 (s, 2H), 4.34 (d, *J* = 6.2 Hz, 2H), 4.09 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 167.35, 152.22, 135.36, 130.80, 130.63, 129.66, 126.22, 124.75, 124.69, 119.43, 74.79, 62.65, 48.80. HRMS (ESI) *m/z* calcd for $C_{13}H_{14}N_2O_3$ (M+H)⁺ 247.1077, found 247.1078.

Data for (E)-5-(methoxyimino)-3-(prop-2-yn-1-yl)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-07**): yield 52.5 %; yellowish solid; mp 82-83 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 8.67 – 8.55 (m,

1H), 7.96 (s, 1H), 7.55 – 7.34 (m, 2H), 7.22 (d, J = 6.8 Hz, 1H), 5.26 (d, J = 15.0 Hz, 1H), 5.06 (d, J = 15.0 Hz, 1H), 4.77 (dd, J = 61.2, 2.6 Hz, 2H), 4.08 (d, J = 12.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 159.64, 157.22, 143.08, 135.42, 131.15, 129.91, 126.97, 124.23, 123.79, 123.01, 89.08, 65.23, 62.98. HRMS (ESI) m/z calcd for C₁₃H₁₂N₂O₃ (M+H)⁺ 245.0921, found 245.0921.

Data for (E)-5-(methoxyimino)-3-(4-methylbenzyl)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-08**): yield 50.9 %; white solid; mp 72-74 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.90 – 7.70 (m, 1H), 7.42 – 7.31 (m, 4H), 7.21 (d, *J* = 7.9 Hz, 2H), 7.01 (d, *J* = 7.1 Hz, 1H), 4.98 (s, 2H), 4.84 (s, 2H), 4.09 (s, 3H), 2.40 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 167.47, 152.28, 137.54, 135.42, 131.63, 130.89, 129.56, 129.07, 128.65, 126.20, 124.82, 124.57, 74.80, 62.70, 49.64, 20.84. HRMS (ESI) *m/z* calcd for C₁₈H₁₈N₂O₃ (M+H)⁺ 311.1390, found 311.1390.

Data for (E)-3-(4-chlorobenzyl)-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-09**): yield 75 %; white solid; mp 93-94 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.84 – 7.64 (m, 1H), 7.37 – 7.25 (m, 6H), 6.98 (d, J = 6.4 Hz, 1H), 4.95 (s, 2H), 4.77 (s, 2H), 4.03 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 167.66, 152.02, 135.14, 133.78, 133.24, 130.92, 130.03, 129.68, 128.60, 126.31, 124.72, 124.60, 74.83, 62.76, 49.27. HRMS (ESI) m/z calcd for C₁₇H₁₅ClN₂O₃ (M+H)⁺ 331.0844, found 331.0847.

Data for (E)-5-(methoxyimino)-3-(4-nitrobenzyl)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-10**): yield 56 %; yellowish solid; mp 92-93 °C; ¹H NMR (300 MHz, DMSO) δ 8.39 – 8.20 (m, 2H), 7.66 (dd, J = 12.7, 4.9 Hz, 3H), 7.49 (td, J = 7.6, 1.4 Hz, 1H), 7.38 (t, J = 6.9 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 5.33 (s, 2H), 5.06 (s, 2H), 3.95 (s, 3H).¹³C NMR (75 MHz, DMSO) δ 166.11, 152.38, 147.24, 143.36, 135.97, 130.49, 130.28, 129.47, 126.65, 125.86, 124.37, 123.92, 74.00, 62.68, 48.10. HRMS (ESI) m/z calcd for C₁₇H₁₅N₃O₅ (M+H)⁺ 342.1086, found 342.1084.

Data for (E)-4-((5-(methoxyimino)-4-oxo-4,5-dihydrobenzo[e][1,2]oxazepin-3(1H)yl)methyl)benzonitrile (**5-11)**. Yellowish oil; yield, 26%. ¹H NMR (300 MHz, CDCl₃) δ 7.89 – 7.75 (m, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.46 – 7.33 (m, 2H), 7.07 (d, *J* = 6.6 Hz, 1H), 5.08 (s, 2H), 4.92 (s, 2H), 4.09 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 167.80, 151.71, 140.07, 134.84, 132.22, 130.96, 129.80, 129.05, 126.46, 124.63, 124.60, 118.14, 111.79, 74.73, 62.84, 49.48. HRMS (ESI) m/z calcd for C₁₈H₁₆N₃O₃ (M+H)+ 322.1186, found 322.1185.

Data for (E)-3-(2-chlorobenzyl)-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-12**): yield 24 %; white solid; mp 69-70 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 1H), 7.60 – 7.50 (m, 1H), 7.41 (dd, *J* = 8.1, 5.6 Hz, 2H), 7.32 (t, *J* = 6.4 Hz, 2H), 7.29 (s, 1H), 7.15 (d, *J* = 7.6 Hz, 1H), 5.38 (s, 2H), 5.23 (s, 2H), 4.09 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 171.17, 147.18, 137.83, 133.12, 132.63, 130.31, 129.92, 129.34, 129.23, 129.15, 126.49, 125.88, 125.07, 71.84, 67.44, 62.82. HRMS (ESI) *m/z* calcd for C₁₇H₁₅ClN₂O₃ (M+H)⁺ 331.0844, found 331.0843.

dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-13**): yield 66 %; yellowish solid; mp 109-111 $^{\circ}C$; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.58 (s, 1H), 7.36 (dt, *J* = 20.5, 6.7 Hz, 2H), 7.09 (d, *J* = 7.5 Hz, 1H), 5.19 (s, 2H), 4.92 (s, 2H), 4.05 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 168.12, 152.45, 151.55, 141.23, 134.91, 133.22, 130.89, 129.82, 126.37, 124.73, 124.50, 75.08, 62.83, 42.28. HRMS (ESI) *m/z* calcd for C₁₄H₁₂ClN₃O₃S (M+H)⁺ 338.0361, found 338.0367.

Data for (E)-3-((6-chloropyridin-3-yl)methyl)-5-(methoxyimino)-3,5dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-14**): yield 68 %; yellowish solid; mp 109-111 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.45 (d, *J* = 2.4 Hz, 1H), 7.84 − 7.71 (m, 2H), 7.46 − 7.31 (m, 3H), 7.07 (d, *J* = 7.3 Hz, 1H), 5.09 (s, 2H), 4.84 (s, 2H), 4.07 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.01, 151.67, 151.10, 149.71, 139.17, 134.82, 130.93, 129.79, 129.41, 126.43, 124.66, 124.56, 124.14, 74.84, 62.84, 46.73.HRMS (ESI) *m/z* calcd for C₁₆H₁₅ClN₃O₃ (M+H)⁺ 332.0796, found 332.0792.

Datafor(E)-methyl2-(methoxyimino)-2-(2-(((E)-5-(methoxyimino)-4-oxo-4,5-dihydrobenzo[e][1,2]oxazepin-3(1H)-yl)methyl)phenyl)acetate(**5-15**): yield 63 %;white solid; mp 147°C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 – 7.66 (m, 1H), 7.55 – 7.37 (m, 3H), 7.35 – 7.25 (m, 2H), 7.19 (dd, J = 5.4, 3.6 Hz, 1H), 6.94 (d, J = 7.7 Hz, 1H), 4.77 (s, 2H), 4.68 (s, 2H), 4.04 (s, 3H), 3.95 (s, 3H), 3.64 (s, 3H).NMR (75 MHz, CDCl₃) δ 167.76, 162.98, 152.13, 148.36, 135.70, 133.15, 130.79, 130.49, 129.82, 129.47,129.36, 128.45, 127.79, 126.03, 124.77, 124.62, 75.01, 63.46, 62.71, 52.48, 48.45. HRMS (ESI) *m/z* calcdfor C₂₁H₂IN₃O₆ (M+H)⁺ 412.1503, found 412.1503.

Data for (E)-1,3-diallyl-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-16**): yield 42%; white solid; mp 52 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.61 (dd, *J* = 6.3, 2.8 Hz, 1H), 7.35 (ddd, *J* = 3.9, 3.2, 1.1 Hz, 2H), 7.22 − 7.06 (m, 1H), 6.13 (ddd, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.96 − 5.66 (m, 1H), 5.54 − 5.36 (m, 2H), 5.36 − 5.17 (m, 2H), 5.11 (d, *J* = 7.0 Hz, 1H), 5.00 (d, *J* = 14.9 Hz, 1H), 4.82 (d, *J* = 14.9 Hz, 1H), 4.61 (dd, *J* = 15.1, 4.7 Hz, 1H), 3.96 (d, *J* = 1.0 Hz, 3H), 3.44 (dd, *J* = 15.1, 8.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 162.86, 154.10, 136.19, 133.16, 131.77, 130.73, 129.02, 127.25, 125.41, 119.11, 119.06, 90.77, 69.03, 62.06, 46.37. HRMS (ESI) *m/z* calcd for C₁₆H₁₈N₂O₃ (M+H)⁺ 287.1390, found 287.1391.

Data for (E)-1,3-bis(2-chlorobenzyl)-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)one (**5-17**): yield 54 %; white solid; mp 96-97 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.85 − 7.74 (m, 1H), 7.68 (dd, *J* = 5.8, 3.3 Hz, 1H), 7.42 − 7.23 (m, 7H), 7.22 − 7.09 (m, 3H), 6.24 (s, 1H), 5.19 − 5.01 (m, 2H), 4.80 (d, *J* = 14.9 Hz, 1H), 4.31 (d, *J* = 15.5 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ164.96, 154.11, 135.48, 133.75, 133.23, 133.19, 133.14, 130.61, 130.19, 129.89, 129.34, 129.28, 129.02, 128.63, 128.30, 127.62, 127.49, 126.71, 126.55, 125.89, 89.11, 72.15, 62.17, 44.21. . HRMS (ESI) *m/z* calcd for C₂₄H₂₀Cl₂N₂O₃ (M+H)⁺ 455.0924, found 455.0930.

Data for (E)-5-(methoxyimino)-3-methyl-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-18**): yield 83 %; white solid; mp 106-107 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.85 - 7.70 (m, 1H), 7.39 (ddd, J = 15.3, 10.5, 4.3 Hz, 2H), 7.13 (d, J = 7.6 Hz, 1H), 5.24 (s, 2H), 4.08 (s, 3H), 3.32 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.36, 152.08, 135.24, 130.88, 129.63, 126.27, 124.82, 124.65, 73.65, 62.69, 32.44. HRMS (ESI) m/z calcd for C₁₁H₁₂N₂O₃ (M+H)⁺ 221.0921, found 221.0919.

Data for (E)-3-ethyl-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one (**5-19**): yield 63 %; white solid; mp 61-62 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 6.8 Hz, 1H), 7.45 - 7.31 (m, 2H), 7.13 (d, J = 7.7 Hz, 1H), 5.25 (s, 2H), 4.08 (s, 3H), 3.77 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 167.38, 152.40, 135.34, 130.89, 129.59, 126.23, 124.94, 124.58, 74.57, 62.65, 40.94, 11.68. HRMS (ESI) m/z calcd for C₁₂H₁₄N₂O₃ (M+H)⁺ 235.1070, found 235.1070.

Single crystal X-Ray data for compound 5-09

Table 1: Crystal data and structure refinement for (5-09)

Identification code	(5-09)
Empirical formula	$C_{17}H_{15}C1N_2O_3$
Formula weight	330.76
Temperature / K	104.8
Crystal system	orthorhombic
Space group	P212121
a / Å, b / Å, c / Å	8.7758(3), 10.3761(4),
$\alpha \ / \ ^{\circ}$, $\beta \ / \ ^{\circ}$, $\gamma \ / \ ^{\circ}$	90.00, 90.00, 90.00
Volume / Å ³	1529.75(10)
Z	4
$\rho_{\rm calc} \ / \ \rm mg \ \rm mm^{-3}$	1.436
μ / mm ⁻¹	0.267
F (000)	688
Crystal size / mm ³	$0.30 \times 0.25 \times 0.24$
2Θ range for data collection	6.54 to 52°
Index ranges	$-10 \leq h \leq 10$, $-12 \leq k \leq 10$,
Reflections collected	6446
Independent reflections	3009[R(int) = 0.0255 (inf-0.9Å)]
Data/restraints/parameters	3009/0/209
Goodness-of-fit on F ²	1.043

Final R indexes [I>2 σ (I) i.e.	$R_1 = 0.0306, wR_2 = 0.0655$
Final R indexes [all data]	$R_1 = 0.0337, WR_2 = 0.0675$
Largest diff. peak/hole / e Å $^{-3}$	0.174/-0.195
Flack Parameters	0.00(5)
Completeness	0.997

Table 2 Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters (Å $^2\times 10^3$) for (5–09). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
C11	5466.1(5)	4290.5(5)	345.5(3)	21.05(12)
03	7387.5(14)	-1527.3(12)	-3836.8(7)	16.5(3)
N2	7990.7(15)	-555.3(16)	-3347.5(8)	15.2(3)
01	6722.2(13)	2584.6(13)	-3564.9(7)	16.3(3)
02	10112.4(13)	1370.5(13)	-2817.3(7)	18.6(3)
C3	8096.8(17)	712.9(18)	-4606.2(10)	13.4(4)
C14	6369.0(18)	4144.0(19)	-578.5(10)	15.3(4)
N1	8242.5(16)	2664.9(16)	-3285.7(9)	15.7(3)
C4	7411.2(19)	1835.4(19)	-4908.6(10)	14.8(4)
С5	6687(2)	2861.9(19)	-4400.0(11)	17.0(4)

C12	6565(2)	4747.5(18)	-1943.7(10)	16.0(4)
C6	8677.5(19)	-201.0(19)	-5137.5(10)	16.0(4)
C2	8278.8(18)	479.3(18)	-3732.7(10)	13.3(4)
С9	7304(2)	1991(2)	-5732.8(11)	19.6(4)
C10	8602.6(19)	3826.0(17)	-2837.1(10)	15.5(4)
C8	7847(2)	1061(2)	-6251.1(11)	21.4(4)
C15	7575(2)	3298.8(19)	-663.0(11)	17.4(4)
C11	7790.9(19)	3918.6(17)	-2044.7(10)	13.4(4)
C1	8962.3(19)	1521.5(18)	-3214.5(10)	13.8(4)
C17	6885(2)	-2564.8(19)	-3338.3(11)	19.2(4)
C7	8545(2)	-39(2)	-5951.3(11)	20.0(4)
C13	5849(2)	4878.6(19)	-1210.8(11)	18.1(4)
C16	8285(2)	3192.8(19)	-1399.0(11)	17.6(4)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for (5-09). The Anisotropic displacement factor exponent takes the form: - $2 \pi^{2} [h^{2}a*^{2}U_{11}+\ldots+2hka\times b\times U_{12}]$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C11	20.8(2)	26.6(3)	15.8(2)	-1.4(2)	4.16(18)	-1.4(2)
03	24.0(6)	10.6(7)	14.9(6)	-1.3(5)	-2.8(5)	-4.9(6)
N2	17.3(7)	13.0(9)	15.4(7)	-3.4(7)	-1.4(6)	0.5(7)
01	12.2(5)	20.5(8)	16.1(6)	-0.5(6)	-1.3(5)	0.5(6)
02	19.4(6)	17.7(7)	18.6(6)	-1.1(6)	-7.1(5)	1.3(5)
C3	12.3(7)	14.0(9)	14.0(8)	1.1(8)	-1.3(7)	-2.8(7)
C14	15.4(8)	16.4(10)	13.9(8)	-2.5(8)	1.8(7)	-5.8(8)
N1	12.4(7)	17.3(9)	17.4(8)	-3.6(7)	-3.2(6)	0.7(6)
C4	11.7(8)	17.3(10)	15.5(9)	0.8(8)	-1.2(7)	-4.1(8)
C5	17.7(8)	15.2(10)	18.2(9)	2.7(8)	-6.0(8)	1.3(8)
C12	17.0(8)	14.9(10)	16.2(9)	3.1(8)	-1.6(8)	-0.8(8)
C6	14.9(8)	15.9(10)	17.3(9)	-0.7(8)	0.8(7)	-1.9(8)
C2	10.6(7)	15.5(11)	13.9(8)	0.0(7)	0.1(7)	0.7(7)
С9	18.4(9)	21.6(11)	18.7(10)	7.1(9)	-3.0(8)	-4.0(8)
C10	19.3(9)	12.1(10)	14.9(9)	-1.2(7)	-0.2(7)	-1.9(8)
C8	21.0(9)	30.8(12)	12.4(9)	2.5(8)	-0.9(7)	-7.3(8)

C15	21.5(9)	15.3(10)	15.6(9)	1.5(8)	-2.9(8)	-1.0(8)
C11	16.2(8)	10.4(9)	13.6(9)	-2.6(7)	-0.7(7)	-3.9(7)
C1	15.9(8)	15.3(10)	10.2(8)	1.5(7)	3.1(7)	-1.4(7)
C17	25.4(10)	14.1(10)	18.1(10)	0.5(8)	-0.7(8)	-5.2(8)
C7	18.9(9)	25.8(12)	15.2(9)	-3.6(8)	1.7(8)	-5.4(9)
C13	16.1(8)	16.6(10)	21.7(10)	-1.4(8)	1.4(8)	-0.7(8)
C16	19.6(8)	13.7(10)	19.5(10)	-0.3(8)	-0.1(8)	4.9(8)

Table 4 Bond Lengths for (5-09).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C11	C14	1.7494(17)	N1	C1	1.349(2)
03	N2	1.4048(19)	C4	С5	1.506(3)
03	C17	1.434(2)	C4	С9	1.397(2)
N2	C2	1.279(2)	C12	C11	1.388(2)
01	N1	1.4167(17)	C12	C13	1.389(3)
01	С5	1.432(2)	C6	C7	1.382(2)
02	C1	1.220(2)	C2	C1	1.512(2)
C3	C4	1.406(3)	С9	С8	1.384(3)
C3	C6	1.398(2)	C10	C11	1.513(2)
C3	C2	1.496(2)	С8	C7	1.390(3)
C14	C15	1.382(3)	C15	C16	1.389(3)
C14	C13	1.385(3)	C11	C16	1.390(2)
N1	C10	1.456(2)			

Table 5 Bond Angles for (5-09).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N2	03	C17	108.25(12)	C7	C6	C3	121.22(18)
C2	N2	03	112.40(13)	N2	C2	C3	127.69(16)
N1	01	С5	109.43(12)	N2	C2	C1	112.79(15)
C4	C3	C2	122.30(16)	С3	C2	C1	119.42(15)
C6	C3	C4	119.15(16)	C8	С9	C4	121.33(19)
C6	С3	C2	118.52(16)	N1	C10	C11	113.95(14)
C15	C14	C11	119.56(14)	С9	C8	С7	119.74(17)
C15	C14	C13	121.52(16)	C14	C15	C16	119.03(17)
C13	C14	C11	118.92(14)	C12	C11	C10	120.79(16)
01	N1	C10	115.12(14)	C12	C11	C16	118.82(16)
C1	N1	01	114.74(14)	C16	C11	C10	120.37(16)
C1	N1	C10	125.45(14)	02	C1	N1	123.28(17)
C3	C4	C5	124.16(16)	02	C1	C2	123.44(17)
С9	C4	C3	118.84(18)	N1	C1	C2	113.07(15)

С9	C4	C5	116.89(17)	C6	C7	C8	119.68(18)
01	C5	C4	113.86(15)	C14	C13	C12	118.50(17)
C11	C12	C13	121.31(17)	C15	C16	C11	120.80(17)

Table 6 Torsion Angles for (5-09).

A	В	С	D	Angle/°
C11	C14	C15	C16	-179.86(14)
C11	C14	C13	C12	-179.46(14)
03	N2	C2	C3	-2.4(2)
03	N2	C2	C1	-178.69(13)
N2	C2	C1	02	55.6(2)
N2	C2	C1	N1	-129.43(16)
01	N1	C10	C11	67.20(19)
01	N1	C1	02	-162.21(14)
01	N1	C1	C2	22.8(2)
C3	C4	C5	01	-1.4(2)
C3	C4	С9	С8	0.4(3)
C3	C6	C7	C8	1.2(3)
C3	C2	C1	02	-121.05(19)

C3	C2	C1	N1	53.9(2)
C14	C15	C16	C11	-0.3(3)
N1	01	C5	C4	69.47(19)
N1	C10	C11	C12	-104.76(19)
N1	C10	C11	C16	76.7(2)
C4	C3	C6	С7	-2.1(2)
C4	C3	C2	N2	134.29(19)
C4	C3	C2	C1	-49.6(2)
C4	С9	С8	С7	-1.4(3)
C5	01	N1	C10	103.84(16)
C5	01	N1	C1	-99.02(17)
С5	C4	С9	С8	-175.91(16)
C12	C11	C16	C15	-0.5(3)
C6	C3	C4	C5	177.34(16)
C6	C3	C4	С9	1.3(2)
C6	C3	C2	N2	-47.9(2)
C6	C3	C2	C1	128.19(17)
C2	C3	C4	С5	-4.9(3)
C2	C3	C4	С9	179.08(16)
C2	C3	C6	C7	-179.97(16)
С9	C4	C5	01	174.77(15)
С9	C8	C7	C6	0.6(3)
C10	N1	C1	02	-7.8(3)

C10	N1	C1	C2	177.22(15)
C10	C11	C16	C15	178.13(17)
C15	C14	C13	C12	0.3(3)
C11	C12	C13	C14	-1.1(3)
C1	N1	C10	C11	-87.1(2)
C17	03	N2	C2	-171.16(15)
C13	C14	C15	C16	0.4(3)
C13	C12	C11	C10	-177.42(16)
C13	C12	C11	C16	1.2(3)

Table 7 Hydrogen Atom Coordinates (Å $\times10^4)$ and Isotropic Displacement Parameters (Å $^2\times10^3)$ for (5–09).

Atom	X	У	Z	U(eq)
Н5А	7220	3689	-4495	20
H5B	5613	2972	-4567	20
H12	6208	5235	-2385	19
H6	9172	-947	-4935	19
Н9	6848	2749	-5942	23
H10A	8330	4587	-3163	19
H10B	9716	3854	-2743	19

Н8	7744	1175	-6810	26
H15	7913	2797	-224	21
H17A	6576	-3296	-3671	29
H17B	6016	-2278	-3017	29
H17C	7718	-2829	-2986	29
H7	8929	-677	-6304	24
H13	5022	5459	-1145	22
H16	9118	2617	-1462	21

Experimental

Single crystals of $C_{17}H_{15}ClN_2O_3$ [(5-09)] were recrystallised from [dichloromethane/n-hexane] mounted in inert oil and transferred to the cold gas stream of the diffractometer.

Crystal structure determination of [5-09]

Crystal Data. $C_{17}H_{15}CIN_2O_3$, M = 330.76, orthorhombic, a = 8.7758(3) Å, b = 10.3761(4) Å, c = 16.7996(6) Å, U = 1529.75(10) Å³, T = 104.8, space group P2₁2₁2₁ (no. 19), Z = 4, μ (Mo K α) = 0.267, 6446 reflections measured, 3009 unique ($R_{int} = 0.0255$) which were used in all calculations. The final $wR(F_2)$ was 0.0675 (all data).