
ELECTRONIC SUPPLEMENARY INFORMATION

Identification of diaminoquinazoline histone lysine methyltransferase structure activity relationships that allow for segregation of human G9a inhibition and anti-*Plasmodium* activity

Sandeep Sundriyal[†], Patty B. Chen[†], Alexandra S. Lubin[†], Gregor A. Lueg[†], Fengling Li[‡], Andrew J. P. White[†], Nicholas A. Malmquist[†], Masoud Vedadi[‡], Artur Scherf[†], Matthew J. Fuchter^{‡*}

Contents:

I.	Table ST1 - ST5	2-7
II.	Synthesis of Diaminoquinazolines: Representative examples from Table 1 and 2	8-13
III.	Synthesis of Diaminoquinazolines: Representative examples from Table 3	14-17
IV.	NOE analysis of diaminoisoquinolines	18
V.	NOE analysis/spectral data for diaminoquinolines intermediates	19-21
VI.	X-ray crystal structure of 111a (Figure SF1)	22
VII.	References	23

ID	R4	R2	$\frac{Pf3D7}{IC_{50} (nM)^{a}}$	G9a IC ₅₀ (nM)	G9a/Pf3D7	HepG2 IC ₅₀ (µM)	clogP	PSA
S 1	HN N	rd ^s N N	67.6	>1000	>14.8	4.9	4.44	78.88
S2	HN C	^{s^s} N N N N N N N N N N N N N N N N N N N	54.0	338	6.3	4.9	4.44	78.88
S 3	HN	Professional Action of the second sec	30.3	>1000	>33	10.7	3.89	79.82
S4	HN HN	Part N O OMe	41.7	>1000	>24	9.6	4.11	89.05
S 5	HN	Por N O	47.0	>1000	>21.3	11.2	4.53	79.82
S 6	HN N		45.4	>1000	>22	7.9	5.35	62.75
S 7	HN I I I I I I I I I I I I I I I I I I I	Professional Action of the second sec	80.4	NT	ND	6.3	4.98	71.98
S 8	HN HN	N N O Ph	60.6	>1000	>16.5	6.4	5.82	79.82
S 9	HN	^{zz} N O	173.8	>1000	>5.8	26.8	1.99	71.98
S10	HN	r r r r r r r r r r r r r r r r r r r	53.4	>1000	>18.7	10.8	2.77	71.98
S11	HN	P F	19.6	>1000	>51	11.7	3.09	62.75
S12	HN	rr ^s N	18.7	185	9.9	5.7	3.64	62.75
S13	HN N		144.5	NT	ND	6.5	4.44	78.88
S14	HN	Provide the second seco	445	>1000	>2.2	ND	3.56	71.98

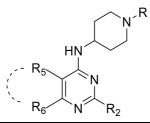
S15	HNNN	est of the second secon	152.4	>1000	>6.6	15.3	3.17	71.98
S16	HNNN	Provide the second seco	110.6	>1000	>9	6.5	4.27	62.75
S17	HNNN	Reference of the second	111.0	>1000	>9	10.8	3.95	71.98
S18	HN HN		335.0	>1000	>3	ND	2.79	95.95
S19	HN HN	N O	>2000	>1000	ND	ND	1.91	89.05
S20	HN HN	Port N	>2000	>1000	ND	ND	2.68	89.05
S21	HN N	P F	>2000	>1000	ND	ND	3.01	79.82
S22	HN N	P225 N	107.4	>1000	>9.3	17.8	3.55	79.82
S23	HN		194.5	>1000	>5.1	28.3	4.11	75.64
S24	HN	Por the second s	922.6	NT	ND	ND	3.23	68.74
S25	HN	^{₽⁵} N F	272.3	>1000	>3.7	ND	4.33	59.51
S26	HN	R N N	322.5	>1000 ^b / >10000 ^c	>3.1/ >31	ND	2.61	62.75
S27	HN	Port N	>300	NT	ND	ND	2.22	62.75
S28		^{2,5} ⁵ N−	>300	910 ^b / 1900 ^c	ND	ND	1.90	65.99
S29	HN	N-N-	>300	>1000 ^b / >10000 ^c	ND	ND	2.38	71.98

^b IC₅₀ reported using enzyme-coupled SAH detection (ECSD) assay^{2, 3}

^c IC₅₀ reported in using chemiluminescence-based oxygen tunnelling (CLOT) assay^{2, 3}

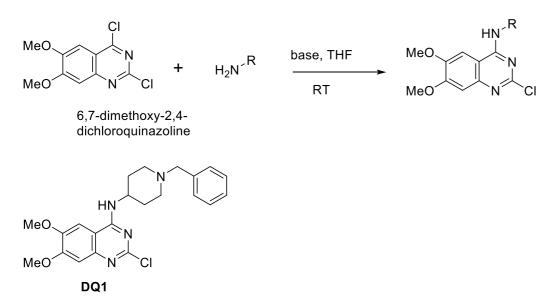
NT = not tested; ND = not determined

	~~~~			N	$\square$			
			MeO	N				
ID	X	R2	MeO Pf3D7 IC ₅₀ (nM) ^a	$\frac{N R_2}{G9a}$ IC ₅₀ (nM)	G9a/Pf3D7	HepG2 IC ₅₀ (μM)	clogP	PSA
S30	N-Me	^{s^s} N_N−	158.7	>10000	>63	6.0	3.89	57.2
<b>S31</b>	N-Me	rost N	495.1	>10000	>20.2	8.1	4.74	53.96
S32	N-Me	[₹] N	399.5	>50000	>125.2	5.4	5.13	53.96
S33	N-Me	N N N	472.3	>50000	>105.9	9.6	4.47	70.09
<b>S34</b>	0	Professional North Contraction North Contractio	1464	>50000	>34.1	7.9	3.83	63.19
S35	0	N N N	2061	>50000	>24.3	15.7	4.41	76.08
<b>S36</b>	S	PN-	1541	>50000	>32.4	10.2	4.55	53.96
<b>S</b> 37	S	^{s^s} N N ∖	NT	>50000	ND	ND	4.16	53.96
S38	S	ros N	NT	>50000	ND	ND	5.39	50.72
		ng activity reported e ed; ND = not determin						


		$\wedge$					
ID	R ₂	$\begin{array}{c} Pf3D7\\ IC_{50}\left(nM\right)^{a}\end{array}$	G9a IC ₅₀ (nM)	G9a/Pf3D7	HepG2 IC ₅₀ (µM)	clogP	TPS
S39	N N-	100.7	~10000	~99.3	7000	3.85	47.5
S40	^{z^s} N∕N∕	NT	>10000	ND	ND	3.46	47.5
S41	₹_N	NT	>50000	ND	ND	5.09	44.2
S42	Por service of the se	384.6	>50000	>130	4000	4.70	44.2
S43	And N N N N N N N N N N N N N N N N N N N	353.6	>50000	>141.4	5000	4.43	60.4

		F				
		MeO	Ņ			
		R ₇ O				
ID	R ₇	Pf3D7	G9a	HepG2	clogP	TPSA
		$IC_{50}(nM)^{a}$	$IC_{50}(nM)$	$IC_{50}(\mu M)$	<b>0</b> 10.81	11 511
S44	-OH	>2000	~10000	ND	1.99	76.99
S45	N I	>2000	140 ^b /110 ^c	ND	3.01	69.23
S46	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>2000	95 ^b /49 ^c	ND	3.40	69.23
	_N_ ۲					
S47		>2000	1500 ^b /3200 ^c	ND	3.79	69.23
	N 					
<b>S48</b>	HN J	>2000	120 ^b /45 ^c	ND	2.28	78.02
S49	N A A	>2000	52 ^b /65 ^c	ND	3.40	69.23
57)		- 2000	52705	ΠD	5.40	07.23
<b>S50</b>		>2000	9 ^b /6 ^c	ND	2.24	78.46
	N					
<b>S51</b>	, N, O, V, (	>2000	57 ^b /110 ^c	ND	2.78	78.46
<b>S52</b>	25	>2000	>1000 ^b / >10000 ^c	ND	2.32	109.1
	H ₂ N [×] O		1			

^a Parasite-killing activity reported earlier¹


^b IC₅₀ reported using enzyme-coupled SAH detection (ECSD) assay^{2, 3} ^c IC₅₀ reported using chemiluminescence-based oxygen tunnelling (CLOT) assay^{2, 3}

ND = not determined

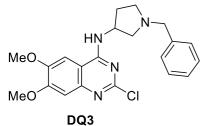


$R_{5}/R_{6}$ $n \qquad S \qquad $	s s s s	Pf3D7 IC ₅₀ (nM) 562 1255 >2000 1291 >2000 >2000	G9a IC ₅₀ (nM) $\sim 50000^{a}$ $> 50000^{a}$ $> 50000^{a}$ $> 50000^{a}$	G9a/Pf3D7 ~89 >39.8 ND >38.7 ND	HepG2 IC ₅₀ (nM) ND 8200 ND ND ND	clogP 3.91 3.52 4.49 3.91 4.76	PSA 47.53 47.53 60.42 47.53 44.29
$n \qquad S \qquad $	$\left( \begin{array}{c} \mathbf{z} \\ \mathbf{z} \\$	1255 >2000 1291 >2000	$>50000^{a}$ $>50000^{a}$ $>50000^{a}$ $>50000^{a}$	>39.8 ND >38.7	8200 ND ND	<ul><li>3.52</li><li>4.49</li><li>3.91</li></ul>	47.53 60.42 47.53
$ \begin{array}{c}                                     $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	>2000 1291 >2000	$>50000^{a}$ $>50000^{a}$ $>50000^{a}$	ND >38.7	ND ND	4.49 3.91	60.42 47.53
	And N N N N N N N N N N N N N N N N N N N	1291 >2000	$>50000^{a}$ $>50000^{a}$	>38.7	ND	3.91	47.53
$n \qquad \qquad$		>2000	>50000 ^a				
S~S	s s s n n n n n n n n n n n n n n n n n			ND	ND	4.76	14 2
n O	× N N-	>2000	> 500008				44.2
			>50000 ^a	ND	ND	3.44	60.6
n	R R R R R R R R R R R R R R R R R R R	>2000	>50000 ^a	ND	ND	4.02	73.5
n HN N N	N N-	1013	>50000 ^a	>49.4	ND	2.57	76.2
n HN-s	rest N	>2000	>50000 ^a	ND	ND	3.42	72.9
n		1490	>50000	>33.6	ND	3.76	60.4
n s	Port N	1322	>50000	>37.8	ND	4.03	44.2
e	N N	>2000	>50000	ND	ND	1.22	47.5
n		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$n \qquad \qquad$	$n \qquad \qquad$	$n \qquad \qquad$	$n \qquad \qquad$	$n \qquad \sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{k=1}^{k} 1490 >50000 >33.6 \qquad \text{ND} \qquad 3.76$ $n \qquad \sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{k=1}^{k} 1322 >50000 >37.8 \qquad \text{ND} \qquad 4.03$ $e \qquad \sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{k=1}^{k} 2000 >50000 \qquad \text{ND} \qquad \text{ND} \qquad 1.22$

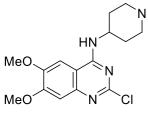
## Synthesis of Diaminoquinazolines: Representative examples from Table 1 and 2



A solution of 1-benzylpiperidin-4-amine (0.810 g, 4 mmol) 2,4-dichloro-6,7-dimethoxyquinazoline (1.04 g, 4 mmol), and triethylamine (1.39 mL, 10 mmol) in dry THF (15 mL) was allowed to stir at room temperature for 20 h. The reaction mixture was concentrated to obtain a dark residue that was purified by silica gel column chromatography (DCM : MeOH (7 N NH₃); 100 :  $0 \rightarrow 97$  : 3). The title product was obtained as off-white solid (1.31 g, 79 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.30-7.23 (m, 5H), 7.09 (s, 1H), 6.83 (s, 1H), 5.57 (d, *J* = 7.8 Hz, 1H), 4.31-4.23 (m, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.53 (s, 2H), 2.90-2.87 (m, 2H), 2.24-2.10 (m, 4H), 1.66-1.57 (m, 2H); HRMS (+ESI) m/z calcd for C₂₂H₂₆N₄O₂Cl 413.1744, found, 413.1754.

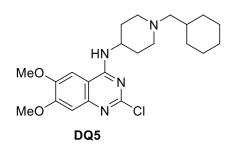



**N-alkylation:** To a solution of 4-Piperidinecarboxamide (0.640 g, 5 mmol) in ethanol (12 mL), potassium carbonate (1.38 g, 10 mmol) and 2-methyl benzylbromide (0.669 mL, 5 mmol) was added and the reaction mixture was refluxed for 3 h. After cooling to room temperature, the reaction mixture was filtered and ethanol was evaporated. The residue was dissolved in DCM, washed with water and dried over anhydrous magnesium sulphate. The organic layer was removed *in vacuo* to obtain pure 1-(2-methylbenzyl)piperidine-4-carboxamide as white solid (0.898 g, 77 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.25-7.11 (m, 4H), 5.65 (s, 1H, br), 5.51 (s, 1H, br), 3.43 (s, 2H), 2.96-2.91 (m, 2H), 2.37 (s, 3H), 2.18-2.12 (m, 1H), 2.04-1.98 (m, 2H), 1.86-1.82 (m, 2H), 1.77-1.67 (m, 2H); HRMS (+ESI) m/z calcd for C₁₄H₂₁N₂O 233.1654, found, 233.1669.


**Hofmann rearrangement:** To a solution of 1-(2-methylbenzyl)piperidine-4-carboxamide (see above, 0.863 g, 3.72 mmol) in acetonitrile (11 mL) and water (7 mL), phenylbis(trifluoroacetato)iodine (PIFA) (1.919 g, 4.464 mmol) was added and the reaction mixture was heated at 65 °C for 18 h. The reaction mixture was concentrated to half volume followed by addition of water and pH adjusted to 1 using 1 M HCl. The aqueous layer was then extracted with ether (25 mL x 2) and the organic layer was discarded. The aqueous layer was then basified using 3 M NaOH to pH 11 and extracted using DCM (15 mL x 3). The organic extracts were combined, dried over anhydrous magnesium sulphate and

removed *in vacuo* to obtain 1-(2-methylbenzyl)piperidin-4-amine as brown oil (0.605 g, 80 %) that was used as such in the next step. ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.25-7.24 (m, 1H), 7.15-7.13 (m, 3H), 3.42 (s, 2H), 2.83-2.79 (m, 2H), 2.70-2.63 (m, 1H), 2.35 (s, 3H), 2.06-2.02 (m, 2H), 1.78-1.75 (m, 2H), 1.40-1.31 (m, 4H); HRMS (+ESI) m/z calcd for C₁₃H₂₁N₂ 205.1705, found, 205.1692.

**DQ2** was synthesized from 1-(2-methylbenzyl)piperidin-4-amine (0.588 g, 2.88 mmol), 2,4-Dichloro-6,7-dimethoxyquinazoline (0.596 g, 2.30 mmol) and triethylamine (0.641 mL, 4.61 mmol), following procedure similar to the synthesis of **DQ1**. After silica gel chromatography **DQ2** was obtained as an off-white solid (0.957 g, 78 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.28-7.26 (m, 1H), 7.17-7.13 (m, 4H), 6.77 (s, 1H), 5.32 (d, *J* = 7.8 Hz, 1H), 4.34-4.25 (m, 1H), 3.99 (s, 3H), 3.97 (s, 3H), 3.49 (s, 2H), 2.90-2.87 (m, 2H), 2.38 (s, 3H), 2.28-2.22 (m, 2H), 2.13-2.10 (m, 2H), 1.67-1.54 (m, 2H); HRMS (+ESI) m/z calcd for C₂₃H₂₈N₄O₂Cl 427.1901, found, 427.1916.

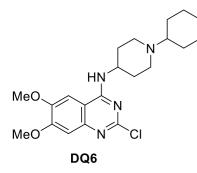



**DQ3** was synthesized from 1-benzylpyrrolidin-3-amine (0.340 mL, 2 mmol) and 2,4-Dichloro-6,7-dimethoxyquinazoline (0.518 g, 2 mmol) following the procedure similar to the synthesis of **DQ1**. The reaction mixture was stirred for 24 h. The title compound was obtained as a white solid (0.756 g, 95 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.35-7.28 (m, 5H), 7.11 (s, 1H), 6.84 (s, 1H,), 6.03 (s, 1H, br), 4.95-4.89 (m, 1H), 3.99 (s, 3H), 3.95 (s, 3H), 3.66 (s, 2H), 3.02 (td, *J* = 8.8, 3.2 Hz, 1H), 2.87-2.81 (m, 1H), 2.66 (dd, *J* = 10.1, 6.3 Hz, 1H), 2.51-2.43 (m, 1H), 2.32 (q, *J* = 8.6 Hz, 1H), 1.80 (dtd, *J* = 12.1, 8.1, 3.7 Hz, 1H); HRMS (+ESI) m/z calcd for C₂₂H₂₆N₄O₂Cl 413.1744, found, 413.1738.

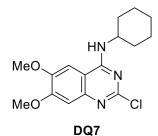


DQ4

**DQ4** was synthesized from 1-methylpiperidin-4-amine (0.624 mL, 5 mmol) and 2,4-Dichloro-6,7-dimethoxyquinazoline (1.295 g, 5 mmol) following a procedure similar to the synthesis of **DQ1**. The title compound was obtained as white solid (1.29 g, 77 %). ¹H NMR (400 MHz, CDCl₃) 7.18 (s, 1H), 7.05 (s, 1H), 6.32 (s, 1H, br), 4.31-4.23 (m, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 2.90-2.87 (m, 2H), 2.35-2.25 (m, 5H), 2.14-2.11 (m, 2H), 1.88 (tt, J = 12.0, 6.1 Hz, 2H); HRMS (+ESI) m/z calcd for C₁₆H₂₂N₄O₂Cl 337.1431, found, 337.1445.

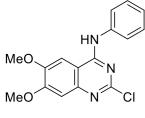



**Reductive amination:** A solution of 4-(N-Boc-amino)piperidine (0.901 g, 4.5 mmol), and cyclohexanecarboxaldehyde (0.36 mL, 3 mmol) was allowed to stir in 1,2-dichloroethane for 3 h after which sodium triacetoxyborohydride (0.890 g, 4.2 mmol) was added in two portions at half-hour intervals, and the solution was left to stir for 18 h. The reaction mixture was quenched using saturated sodium bicarbonate solution and extracted with ethyl acetate. The combined organic layers were dried over magnesium sulfate, concentrated *in vacuo* and purified by column chromatography (DCM


: MeOH (7 N NH₃); 95 : 5) to obtain *tert*-butyl (1-(cyclohexylmethyl)piperidin-4-yl)carbamate as a white solid (0.856 g, 96 %). ¹H NMR (400 MHz, Chloroform-d)  $\delta$  4.43 (s, 1H), 3.47 (s, 1H), 2.78 (d, *J* = 11.6 Hz, 2H), 2.10 (d, *J* = 7.1 Hz, 2H), 2.06-1.96 (m, 2H), 1.95-1.86 (m, 2H), 1.82-1.57 (m, 5H), 1.47 (s, 9H), 1.45-1.11 (m, 6H), 1.00-0.78 (m, 2H); HRMS (+ESI) m/z calcd for C₁₇H₃₃N₂O 297.2542, found 297.2542.

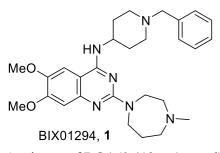
**Boc deprotection:** *tert*-butyl (1-(cyclohexylmethyl)piperidin-4-yl)carbamate was treated with TFA (50 % in DCM) for 4 h, neutralized with sodium hydroxide (2 M) and extracted with DCM. The organic layers were combined, dried over magnesium sulphate, concentrated *in vacuo* to obtain 1-(cyclohexylmethyl)piperidin-4-amine as brown oil (0.513 g, 97 %) that was used as such in next step. ¹H NMR (400 MHz, Chloroform-d)  $\delta$ : 2.91-2.78 (m, 2H), 2.67 (tt, *J* = 10.4, 4.2 Hz, 1H), 2.14 (d, *J* = 7.0 Hz, 2H), 2.05-1.92 (m, 2H), 1.87-1.63 (m, 8H), 1.56-1.34 (m, 3H), 1.32-1.11 (m, 2H), 0.96-0.79 (m, 2H); HRMS (+ESI) m/z calcd for C₁₂H₂₅N₂ 197.2018 found 197.2022.

**DQ5** synthesis: 1-(cyclohexylmethyl)piperidin-4-amine (0.420 g, 2.14 mmol) was treated with 2,4-dichloro-6,7dimethoxyquinazoline (0.554 g, 2.14 mmol) and DIEA (1.15 mL, 6.6 mmol) following procedure similar to the preparation of **DQ1**. The crude product was purified by flash column (DCM : MeOH (7 N NH₃); 100 : 0 → 98 : 2) to yield **DQ5** as a pale yellow solid (0.512 g, 41 %). ¹H NMR (400 MHz, Chloroform-d) δ 7.17 (s, 1H), 6.77 (s, 1H), 5.29 (d, J = 7.6 Hz, 1H), 4.32 (s, 1H), 4.04 (s, 3H), 4.01 (s, 3H), 2.98-2.86 (m, 2H), 2.29-2.12 (m, 6H), 1.89-1.63 (m, 7H), 1.36-1.16 (m, 4H), 1.01-0.84 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.06, 156.37, 154.94, 149.01, 148.08, 109.98, 107.40, 99.46, 65.57, 56.38, 56.28, 52.88, 48.26, 35.32, 32.13, 31.96, 26.76, 26.15; HRMS (+ESI) m/z calcd for C₂₂H₃₂N₄O₂Cl 419.2214, found 419.2214.

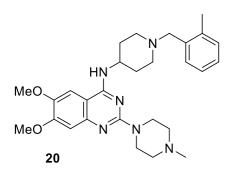



**DQ6** was synthesized from 1-cyclohexylpiperidin-4-amine (0.225 g, 1.24 mmol) and 2,4-dichloro-6,7dimethoxyquinazoline (0.321 g, 1.24 mmol) following procedure similar to the preparation of **DQ5**. The crude product was purified by flash column chromatography (DCM : MeOH (7 N NH₃); 100 :  $0 \rightarrow 95$  : 5) to yield **DQ6** as a pale yellow solid (0.237 g, 47 %). ¹H NMR (400 MHz, Chloroform-d)  $\delta$  7.16 (s, 1H), 6.80 (s, 1H), 5.36(s, 1H), 4.34 (s, 1H), 4.04 (s, 3H), 4.00 (s, 3H), 3.06 (s, 2H), 2.59 (s, 2H), 2.22 (d, J = 15.2 Hz, 1H), 2.00-1.94 (m, 2H), 1.90-1.82 (m, 6H), 1.29 (d, J = 12.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃)  $\delta$  159.09, 156.15, 154.96, 149.10, 148.08, 107.32, 106.71, 99.73, 64.19, 56.48, 56.27, 48.16, 48.02, 32.02, 28.55, 26.14, 25.90; HRMS (+ESI) m/z calcd for C₂₁H₃₀N₄O₂Cl 405.2057, found, 405.2054.

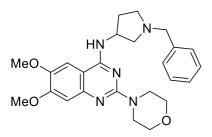



**DQ7** was synthesized from cyclohexylamine (0.46 mL, 4 mmol) and 2,4-Dichloro-6,7-dimethoxyquinazoline (1.04 g, 4 mmol) following a procedure similar to the preparation of **DQ1**. The final product was obtained as pale a yellow syrup (0.887 g, 69 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.08 (s, 1H), 6.87 (s, 1H), 5.56 (s, 1H, br), 4.28-4.21 (m, 1H), 3.95 (s,

3H), 3.93 (s, 3H), 3.53 (s, 2H), 2.14-2.10 (m, 2H), 1.79-1.66 (m, 3H), 1.31-1.16 (m, 3H); HRMS (+ESI) m/z calcd for  $C_{16}H_{21}N_3O_2C1$  322.1322, found, 322.1316.

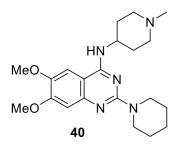



#### DQ8

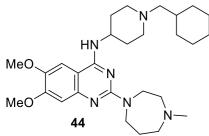

**DQ7** was synthesized from aniline (0.456 mL, 5 mmol) and 2,4-Dichloro-6,7-dimethoxyquinazoline (1.295 g, 5 mmol) following a procedure similar to the synthesis of **DQ1**. The reaction mixture was stirred for 2.5 days and purified by silica gel chromatography (EtOAc : Pet. ether; 1 : 2). The title compound was obtained as a white solid (0.217 g, 14 %). ¹H NMR (400 MHz, CDCl₃) 7.69 (d, 2H, J = 8.8 Hz, 1H), 7.41 (t, 2H, J = 8.4 Hz), 7.32 (s, 1H, br), 7.20-7.16 (m, 2H), 6.97 (s, 1H), 3.98 (s, 6H); HRMS (+ESI) m/z calcd for C₁₆H₁₅N₃O₂Cl 316.0853, found, 316.0863.



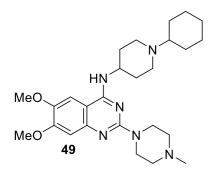
A mixture of **DQ1** (0.413 g, 1 mmol) and 1-methyl-1,4-diazepane (0.6 mL, 5 mmol) in 2 mL toluene was heated at 130 °C for 50 min under microwave conditions. The reaction mixture was concentrated and purified by silica gel column chromatography (DCM : MeOH (7 N NH₃); 98 : 2  $\rightarrow$  95 : 5) to yield **1** as light yellow solid (0.489 g, 79 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.34-7.23 (m, 5H), 6.89 (s, 1H), 6.69 (s, 1H), 4.96 (d, *J* = 7.8 Hz, 1H), 4.15-4.06 (m, 1H), 3.99-3.96 (m, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 3.88 (t, *J* = 6.4 Hz, 2H), 3.55 (s, 2H), 2.92-2.89 (m, 2H), 2.71-2.69 (m, 2H), 2.58-2.56 (m, 2H), 2.37 (s, 3H), 2.22-2.13 (m, 4H), 2.04-1.98 (m, 2H), 1.62 (qd, *J* = 11.6, 11.0, 4.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃)  $\delta$  158.04, 154.40, 145.17, 138.44, 129.11, 128.25, 127.07, 109.99, 105.81, 102.75, 100.82, 63.13, 58.84, 57.26, 56.40, 56.04, 52.57, 48.49, 46.60, 45.88, 45.66, 32.24, 27.59. HRMS (+ESI) m/z calcd for C₂₈H₃₉N₆O₂ 491.3134, found, 491.3124.



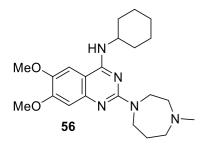

**20** was synthesized from **DQ2** (0.168g, 0.393 mmol) and N-methyl piperazine (0.435 mL, 3.93 mmol) following a procedure similar to the synthesis of BIX01294 (1). After silica gel chromatography it was obtained as a brown solid (0.141 g, 72 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.29-7.27 (m, 1H), 7.18-7.14 (m, 3H), 6.90 (s, 1H), 6.68 (s, 1H), 4.97 (d, *J* = 7.0 Hz, 1H), 4.19-4.12 (m, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.88-3.85 (m, 4H), 3.50 (s, 2H), 2.91-2.88 (m, 2H), 2.50 (t, *J* = 5.0 Hz, 4H), 2.39 (s, 3H), 2.35 (s, 3H), 2.25-2.20 (m, 2H), 2.15-2.12 (m, 2H), 1.63-1.55 (m, 2H); HRMS (+ESI) m/z calcd for C₂₈H₃₉N₆O₂ 491.3134, found, 491.3134.



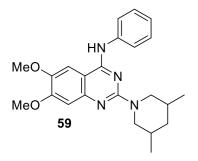

#### S15 (Table ST1)


**S15** was synthesized from morpholine (0.215 mL, 2.51 mmol) and **DQ3** (0.20 g, 0.501 mmol) following a procedure similar to the synthesis of **1**. After silica gel chromatography **S15** was obtained as a yellow solid (0.220 g, 98 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.35-7.26 (m, 5H), 6.90 (s, 1H), 6.75 (s, 1H,), 5.52 (s, 1H, br), 4.84-4.77 (m, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.82-3.76 (m, 8H), 3.67 (s, 2H), 2.95-2.91 (m, 1H), 2.82-2.73 (m, 2H), 2.47-2.41 (m, 2H), 1.80-1.77 (m, 1H); HRMS (+ESI) m/z calcd for C₂₅H₃₂N₅O₃ 450.2505, found, 450.2515.



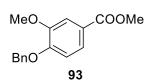

**40** was synthesized from piperidine (0.66 mL, 6.74 mmol) and **DQ4** (0.227 g, 0.674 mmol) following a procedure similar to the synthesis of **1**. After silica gel chromatography **40** was obtained as a green solid (84 mg, 32 %). ¹H NMR (400 MHz, CDCl₃) 6.90 (s, 1H), 6.70 (s, 1H), 4.94 (d, J = 6.7 Hz, 1H, br), 4.18-4.08 (m, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.81-3.77 (m, 4H), 2.89-2.86 (m, 2H), 2.33 (s, 3H), 2.22-2.16 (m, 4H), 1.67-1.58 (m, 8H); HRMS (+ESI) m/z calcd for C₂₁H₃₂N₅O₂ 386.2556, found, 386.2534.



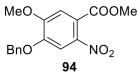

44 was synthesized from **DQ5** (30 mg, 0.072 mmol) and 1-methylhomopiperazine (0.03 mL, 0.24 mmol) following a procedure similar to the synthesis of **1**. After silica gel chromatography the product was obtained as a yellow solid (23 mg, 64 %). ¹H NMR (400 MHz, Chloroform-d)  $\delta$  6.91 (s, 1H), 6.71 (s, 1H), 4.96 (d, J = 7.2 Hz, 1H), 4.18-4.03 (m, 1H), 4.02-3.99 (m, 2H), 3.98 (s, 3H), 3.96 (s, 3H), 3.90 (t, J = 6.4 Hz, 2H), 2.90 (d, J = 11.7 Hz, 2H), 2.79-2.70 (m, 2H), 2.64-2.56 (m, 2H), 2.40 (s, 3H), 2.22-1.96 (m, 8H), 1.86-1.57 (m, 6H), 1.58-1.45 (m Hz, 1H), 1.34-1.15 (m, 4H), 0.99-0.83 (m, 2H); ¹³C NMR (101 MHz, CDCl₃)  $\delta$  158.52, 158.03, 154.32, 149.37, 145.04, 105.99, 102.77, 100.69, 65.78, 58.94, 57.34, 56.36, 56.02, 53.19, 48.53, 46.70, 45.88, 45.73, 35.41, 32.28, 32.00, 27.78, 26.82, 26.20; HRMS (+ESI) m/z calcd for C₂₈H₄₅N₆O₃ 497.3604, found, 497.3593.



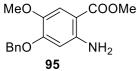
**49** was synthesized from **DQ6** (30 mg, 0.074 mmol) and 1-methylpiperazine (0.025 mL, 0.23 mmol) following a procedure similar to the synthesis of **1**. The crude product was purified by flash column chromatography to yield the product as a pale yellow solid (17 mg, 49 %). ¹H NMR (400 MHz, Chloroform-d)  $\delta$  6.93 (s, 1H), 6.71 (s, 1H), 5.00 (d, J = 7.3 Hz, 1H), 4.19-4.06 (m, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 3.89 (t, J = 5.1 Hz, 4H), 3.07-2.92 (m, 2H,), 2.52 (t, J = 5.1 Hz, 4H), 2.49-2.41 (m, 1H), 2.38 (s, 3H), 2.27-2.15 (m, 2H), 1.99-1.88 (m, 2H), 1.88-1.77 (m, 4H), 1.74-1.54 (m, 2H), 1.37-1.22 (m, 6H); ¹³C NMR (101 MHz, CDCl3)  $\delta$  158.92, 158.20, 154.35, 149.20, 145.46, 106.13, 103.16, 100.57, 63.86, 56.33, 56.00, 55.27, 48.56, 48.20, 46.35, 44.02, 32.67, 28.89, 26.36, 26.06; HRMS (+ESI) m/z calcd for C₂₆H₄₁N₆O₂ 469.3291, found, 469.3293.



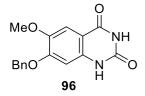

**56** was synthesizxed from **DQ7** (48 mg, 0.149 mmol) and 1-methyl-1,4-diazepane (0.18 mL, 1.49 mmol) following a procedure similar to the synthesis of **1**. After purification the product was obtained as a yellow solid (54 mg, 91 %). ¹H NMR (400 MHz, CDCl₃) 6.88 (s, 1H), 6.69 (s, 1H), 4.93 (d, 1H, br), 4.11-4.05 (m, 1H), 4.00-3.97 (m, 2H), 3.96 (s, 3H), 3.93 (s, 3H), 3.88 (t, J = 6.4 Hz, 2H), 2.72-2.70 (m, 2H), 2.59-2.56 (m, 2H), 2.38 (s, 3H), 2.18-2.14 (m, 2H), 2.02 (dt, J = 11.2, 6.2 Hz, 2H), 1.81 (dd, J = 11.4, 5.2 Hz, 2H), 1.71-1.67 (m, 1H), 1.49-1.39 (m, 2H), 1.34-1.24 (m, 3H); HRMS (+ESI) m/z calcd for C₂₂H₃₄N₅O₂ 400.2713, found, 400.2724.



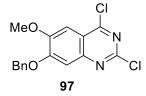

**59** was synthesized from 3,5-dimethylpiperidine (0.441 mL, 3.32 mmol) and **DQ8** (0.210 g, 0.665 mmol) following a procedure similar to the synthesis of **1**. After silica gel chromatography **59** was obtained as a white solid (81 mg, 31 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.69 (d, *J* = 7.9 Hz, 2H), 7.38 (t, *J* = 7.9 Hz, 2H), 7.11 (t, *J* = 7.9 Hz, 1H), 6.99 (s, 1H, br), 6.95 (s, 1H), 6.88 (s, 1H), 4.82-4.79 (m, 2H), 3.97 (s, 3H), 3.95 (s, 3H), 2.32 (t, *J* = 12.1 Hz, 2H), 1.82 (d, *J* = 12.7 Hz, 1H), 1.71-1.60 (m, 2H), 0.95 (s, 3H), 0.94 (s, 3H), 0.77 (q, *J* = 12.0 Hz, 1H); HRMS (+ESI) m/z calcd for C₂₃H₂₉N₄O₂ 393.2279, found, 393.2291.


## Synthesis of Diaminoquinazolines: Representative examples from Table 3



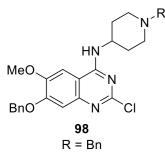

To an ice-cold mixture of 4-hydroxy-3-methoxybenzoic acid methyl ester **92** (10.09 g, 55.51 mmol) and potassium carbonate (19.07 g, 138 mmol) in DMF (50 mL), benzyl bromide (7.5 mL, 63.1 mmol) was slowly added. The reaction mixture was allowed to stir overnight at room temperature and then poured into an ice-cold saturated aqueous NaCl solution. The precipitate was filtered, washed with distilled water and dried *in vacuo* to afford the title compound **93** as a white solid (15.0 g, 99 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.64-7.54 (m, 2H), 7.46-7.28 (m, 5H), 6.89 (d, J = 8.4 Hz, 1H), 5.22 (s, 2H), 3.94 (s, 3H), 3.88 (s, 3H).



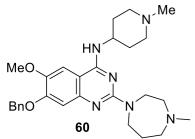

To a solution of **93** (14.32 g, 52.6 mmol) in acetic anhydride (140 mL), nitric acid (conc. 67 %, 12.6 mL) was slowly added and the reaction mixture was allowed to stir for 18 h at room temperature. The reaction mixture was poured into ice water and the precipitate was filtered, washed with distilled water and dried *in vacuo* to afford **94** as a yellow solid (13.7 g, 89 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.52 (s, 1H), 7.46-7.31 (m, 5H), 7.08 (s, 1H), 5.21 (s, 2H), 3.98 (s, 3H), 3.91 (s, 3H).



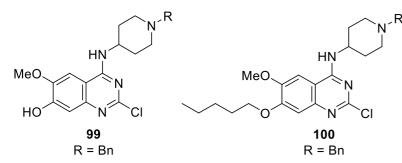
To the mixture of **94** (11.00 g, 34.7 mmol) and Fe dust (7.25 g, 130 mmol) in 160 mL water and *i*PrOH (5 : 3), ammonium chloride (10.51 g, 196 mmol) was added and the reaction mixture was refluxed for 18 h. The resulting precipitate was filtered and washed with 250 mL DCM (with 10 % MeOH). The filtrate was dried over Na₂SO₄ and volatiles were removed *in vacuo* to afford **95** as a white solid (8.38 g, 84 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.45-7.30 (m, 6H), 6.26 (s, 1H), 5.15 (s, 2H), 3.85 (s, 3H), 3.84 (s, 3H); HRMS (+ESI) m/z calcd for C₁₆H₁₇NO₄ 288.1236, found, 288.1233.




To the solution of **95** (8.35 g, 29.1 mmol) in 60 mL AcOH and  $H_2O(2:1)$ , 4.76 g of NaOCN was added and the reaction mixture was allowed to stir for 18 h at room temperature. Afterwards, 60 mL of MeOH was added, the reaction mixture was basified with 8N NaOH solution to pH 13, and refluxed for another 6 h. The reaction mixture was allowed to cool to room temperature and neutralised with concentrated HCl to obtain precipitate that was filtered, washed with water and dried *in vacuo* to afford **96** as a brown solid (6.35 g, 73 %). ¹H NMR (400 MHz, DMSO-d6)  $\delta$  7.49-7.34 (m, 5H), 7.27 (s, 1H), 6.78 (s, 1H), 5.14 (s, 1H), 3.79 (s, 3H); HRMS (+ESI) m/z calcd for C₁₆H₁₅N₂O₄ 299.1032, found, 299.1029.

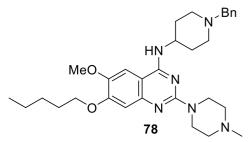



A mixture of **96** (6.35 g, 21.3 mmol), DIEA (3.6 mL, 39.1 mmol) and phosphorus oxychloride (20.3 mL, 79.5 mmol) in acetonitrile (115 mL) was refluxed for 6 h. The reaction mixture was concentrated *in vacuo* to about 15 mL and

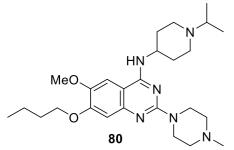

poured in an ice-cold saturated NaHCO₃ solution to obtain precipitate that was filtered, washed with water and dried *in vacuo* to afford **97** as a brownish powder (6.92 g, 97 %). ¹H NMR (400 MHz, DMSO-d6)  $\delta$  7.56 (s, 1H), 7.53-7.35 (m, 5H), 5.37 (s, 2H), 4.00 (s, 3H); ¹³C NMR (101 MHz, DMSO-d6)  $\delta$  159.75, 157.20, 152.21, 152.18, 150.44, 135.99, 129.08, 128.87, 128.73, 117.86, 107.87, 103.15, 71.36, 56,85; HRMS (+ESI) m/z calcd for C₁₆H₁₃N₂O₂Cl₂ 335.0354, found, 335.0358.



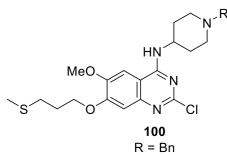
A mixture of **97** (1.96 g, 5.85 mmol), 1-benzylpiperidin-4-amine (1.79 mL, 8.78 mmol) and DIEA (2.03 mL, 11.7 mmol) was allowed to stir in THF for 20 h. The solvent was removed and the residue was partitioned in water and DCM. The organic extraacts were combined, dried over magnesium sulphate and volatiles removed *in vacuo* to obtain solid residue that was purified by silica gel chromatography (DCM : MeOH (7 N NH₃); 99 : 1  $\rightarrow$  97 : 3) to yield **98** (R = Bn) as a pale white solid (1.20 g, 42 %). ¹H NMR (400 MHz, Chloroform-d)  $\delta$  7.51-7.24 (m, 10H), 7.14 (s, 1H), 6.81 (s, 1H), 5.42 (d, *J* = 7.8 Hz, 1H), 5.23 (s, 2H), 4.32-4.23 (m, 1H), 3.97 (s, 3H), 3.55 (s, 2H), 2.90 (dt, *J* = 12.4, 3.7 Hz, 2H), 2.26-2.20 (m, 2H), 2.11 (dd, *J* = 11.8, 3.9 Hz, 2H), 1.67-1.57 (m, 2H); HRMS (+ESI) m/z calcd for C₂₈H₃₀N₄O₂Cl 489.2075, found, 489.2044.




**60** was synthesized from **98** (R = Me) (0.369 g, 0.871 mmol and 1-methyl-1,4-diazepane (0.540 mL, 4.355 mmol) following a procedure similar to the synthesis of **1**. After silica gel chromatography **60** was obtained as a white solid (0.239 g, 66 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.48 (d, *J* = 7.1 Hz, 2H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.34-7.30 (m, 1H), 6.97 (s, 1H), 6.78 (s, 1H), 5.23 (s, 2H), 5.01 (s, 1H, br), 4.14-4.05 (m, 1H), 4.00-3.98 (m, 2H) 3.95 (s, 3H), 3.89 (t, *J* = 6.4 Hz, 2H) 2.91-2.88 (m, 2H), 2.73-2.70 (m, 2H), 2.60-2.57 (m, 2H), 2.39 (s, 3H), 2.35 (s, 3H), 2.21-2.16 (m, 4H), 2.06-2.00 (m, 2H), 1.69-1.60 (m, 2H); HRMS (+ESI) m/z calcd for C₂₈H₃₉N₆O₂ 491.3134, found, 491.3115.

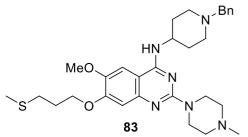



A solution of **98** (R = Bn) (1.16 g, 2.37 mmol) in TFA was refluxed for 3 h after which the volatiles were removed *in vacuo*. The dark residue was taken in saturated sodium bicarbonate solution and sonicated for a few minutes. The resulting solid was filtered, washed with water and ether and dried *in vacuo* to yield **99** (R = Bn) as a pale white solid which was used as such in next step. A mixture of **99** (0.485 g, 1.216 mmol), iodopentane (0.17 mL, 1.337 mmol) and potassium carbonate (0.84 g, 6.08 mmol) in anhydrous DMF (3 mL) was heated at 80 °C for 6 h (reaction not complete). The reaction mixture was cooled to room temperature, diluted with ethyl acetate and filtered to remove solids. The


filtrate was washed with brine, dried over magnesium sulphate and concentrated *in vacuo* to obtain brown residue that was purified by silica gel column chromatography (DCM : MeOH (7 N NH₃); 100 :  $0 \rightarrow 95$  : 5) to obtain **100** (R = Bn) yellow solid (79 mg, 13 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.35-7.29 (m, 5H), 7.11 (s, 1H), 6.86 (s, 1H), 5.54 (d, *J* = 7.8 Hz, 1H), 4.35-4.26 (m, 1H), 4.11 (t, *J* = 6.8 Hz, 2H), 3.97 (s, 3H), 3.57 (s, 2H), 2.94-2.90 (m, 2H), 2.25 (t, *J* = 11.6 Hz, 2H), 2.15-2.13 (m, 2H), 1.94-1.87 (m, 2H), 1.70-1.60 (m, 2H), 1.50-1.37 (m, 4H), 0.95 (t, *J* = 7.1 Hz, 3H); HRMS (+ESI) m/z calcd for C₂₆H₃₄N₄O₂Cl 469.2370, found, 469.2366.

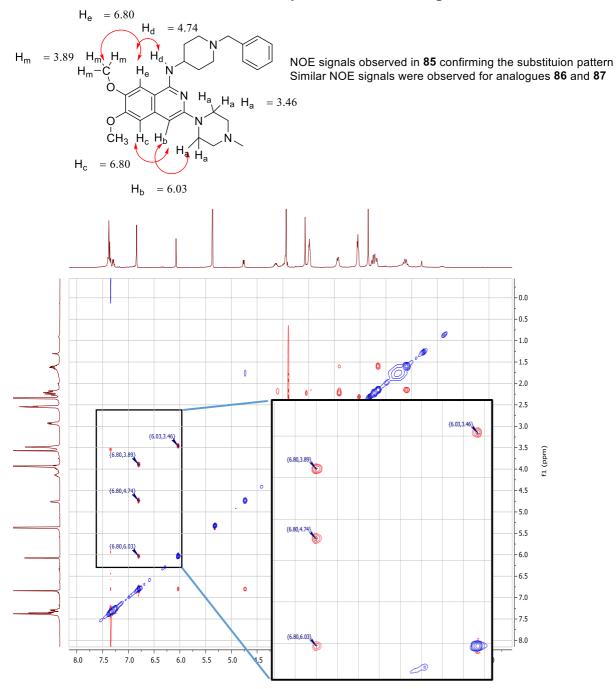


A mixture of **100** (R = Bn) (79 mg, 0.168 mmol), N-methylpiperazine (34 mg, 0.337 mmol) and HCl (0.08 mL, 4 M in dioxane) in isopropanol (3 mL) was heated in microwave at 160 °C for 15 min. The reaction mixture was allowed to cool at room temperature and volatiles were removed *in vacuo* to obtain dark residue that was dissolved in DCM. The organic layer was washed with saturated NaHCO₃ solution, dried over magnesium sulphate and evaporated *in vacuo* to obtain crude product that was purified over neutral alumina (DCM : MeOH (7 N NH₃); 100 :  $0 \rightarrow 98$  : 2) to obtain **78** as a yellow solid (51 mg, 57 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.37-7.29 (m, 5H), 6.91 (s, 1H), 6.72(s, 1H), 5.01 (d, *J* = 7.0 Hz, 1H), 4.20-4.09 (m, 3H), 3.94 (s, 3H), 3.90-3.88 (m, 4H), 3.58 (s, 2H), 2.95-2.92 (m, 2H), 2.53-2.50 (m, 4H), 2.37 (s, 3H), 2.26-2.16 (m, 4H), 1.95-1.88 (m, 2H), 1.69-1.60 (m, 2H), 1.48-1.38 (m, 4H), 0.95 (t, *J* = 7.1 Hz, 3H); HRMS (+ESI) m/z calcd for C₃₁H₄₅N₆O₂ 533.3604, found, 533.3616.

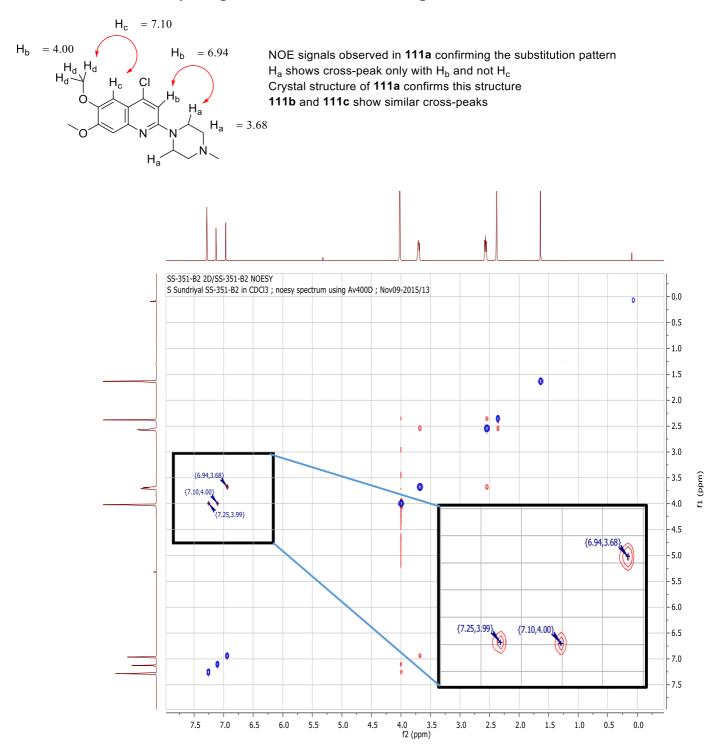


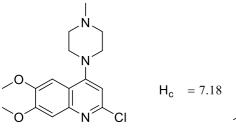

**80** was synthesized from **100** (R = *i*Pr) (0.229 g, 0.564 mmol) and N-methylpiperazine (0.125 mL, 1.128 mmol) and HCl (0.28 mL, 4 M in dioxane) following a procedure similar to the synthesis of **78**. It was obtained as a yellow solid (0.180 g, 68 %). ¹H NMR (400 MHz, Methylene Chloride-d2)  $\delta$  6.83 (s, 1H), 6.78 (s, 1H), 5.09 (d, *J* = 7.3 Hz, 1H), 4.19-4.03 (m, 3H), 3.92 (s, 3H), 3.82 (dd, *J* = 6.4, 3.9 Hz, 4H), 2.91 (d, *J* = 11.8 Hz, 2H), 2.80 (p, *J* = 6.6 Hz, 1H), 2.45 (t, *J* = 5.1 Hz, 4H), 2.38 (td, *J* = 11.5, 2.5 Hz, 2H), 2.32 (s, 3H), 2.18 (d, *J* = 12.0 Hz, 2H), 1.93-1.79 (m, 2H), 1.62-1.47 (m, 4H), 1.08 (s, 3H), 1.07 (s, 3H), 1.03 (t, *J* = 7.4 Hz, 3H); HRMS (+ESI) m/z calcd for C₂₆H₄₃N₆O₂ 471.3448, found, 471.3451.

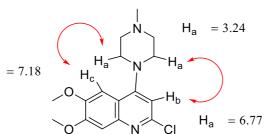



A mixture of **99** (40 mg, 0.1 mmol), 3-(Methylthio)-1-propanol (0.041 mL, 0.4 mmol) and triphenylphosphine (0.131 g, 0.5 mmol) in anhydrous THF (2 mL) was cooled to 0 °C followed by the addition of diisopropyl azodicarboxylate (DIAD) (0.098 mL, 0.5 mmol). The reaction mixture was allowed to stir at room temperature for 20 h. Afterwards, THF was removed, residue dissolved in DCM and organic layer was washed successively with water and brine. The organic layer was then dried over magnesium sulphate and concentrated *in vacuo* to obtain brown residue that was purified by

silica gel column chromatography (DCM : MeOH (7 N NH₃); 100 :  $0 \rightarrow 95$  : 5) to yield **100** (R = Bn) as a brown solid (20 mg, 41 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.37-7.32 (m, 5H), 7.15 (s, 1H), 6.79 (s, 1H), 5.35 (d, *J* = 7.7 Hz, 1H), 4.36-4.29 (m, 1H), 4.24 (t, *J* = 6.3 Hz, 2H), 3.99 (s, 3H), 3.59 (s, 2H), 2.95-2.92 (m, 2H), 2.73 (t, *J* = 7.1 Hz, 2H), 2.31-2.15 (m, 8H), 1.71-1.61 (m, 2H).

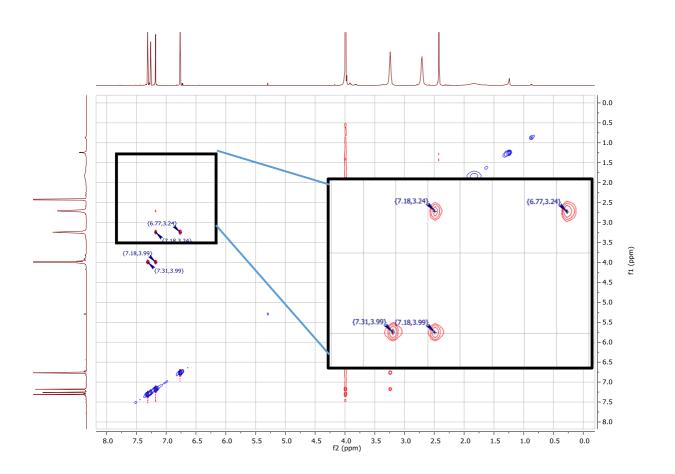


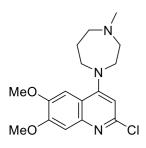


A mixture **100** (R = Bn) (20 mg, 0.041 mmol) and N-methyl piperazine (0.045 mL, 0.41 mmol) in toluene (0.5 mL) was heated at 130 °C for 50 min under microwave irradiation. The reaction mixture was concentrated and purified by silica gel column chromatography (DCM : MeOH (7 N NH₃); 100 :  $0 \rightarrow 95$  : 5) to obtain the final product **83** as a yellow solid (20 mg, 88 %). ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.37-7.30 (m, 5H), 6.92 (s, 1H), 6.71 (s, 1H), 4.98 (d, *J* = 7.1 Hz, 1H), 4.22 (t, *J* = 6.4 Hz, 2H), 4.18-4.11 (m, 1H), 3.93 (s, 3H), 3.88-3.83 (m, 4H), 3.58 (s, 2H), 2.95-2.92 (m, 2H), 2.72 (t, *J* = 7.1 Hz, 2H), 2.52-2.50 (m, 4H), 2.37 (s, 3H), 2.26-2.14 (m, 8H), 1.69-1.59 (m, 2H); HRMS (+ESI) m/z calcd for C₃₀H₄₃N₆O₂S 551.3168, found, 551.3171.


# NOE analysis of diaminoisoquinolines



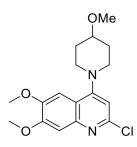
# NOE analysis/spectral data for diaminoquinolines intermediates



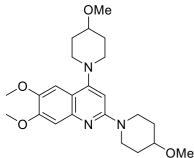



#### Regioisomer of 111a


¹H NMR (400 MHz, Chloroform-d) δ 7.31 (s, 1H), 7.18 (s, 1H), 6.77 (s, 1H), 3.99 (s, 6H), 3.24 (t, J = 5.0 Hz, 4H), 2.70 (t, J = 4.8 Hz, 4H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.78, 152.55, 149.24, 148.85, 145.72, 117.01, 108.57, 108.23, 101.90, 56.11, 55.89, 54.95, 51.73, 46.05; HRMS (+ESI) m/z calcd for C₁₆H₂₁ClN₂O₃, 322.1322, found, 322.1326.






#### **Regioisomer of 111b**

¹H NMR (500 MHz, Chloroform-d) δ 7.27 (s, 1H), 7.18 (s, 1H), 6.67 (s, 1H), 3.97 (s, 6H), 3.64-3.62 (m, 2H), 3.57-3.54 (m, 2H), 2.82-2.80 (m, 2H), 2.77-2.75 (m, 2H), 2.44 (s, 3H), 2.09-2.05 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 158.27, 152.10, 149.17, 147.86, 146.03, 116.25, 108.20, 106.84, 103.32, 58.27, 57.50, 56.02, 55.94, 54.16, 52.95, 46.96, 28.00; HRMS (+ESI) m/z calcd for  $C_{17}H_{23}CIN_2O_3$ , 336.1479, found, 336.1479.



#### Regioisomer of 111c

This regioisomer of **111c** could not be isolated in high purity by column chromatography and only a small amount was isolated for characterization purpose using preparative TLC (EtOAc : Pet. ether; 1 : 2). ¹H NMR (400 MHz, Methylene Chloride-d2)  $\delta$  7.24 (s, 1H), 7.17 (s, 1H), 6.74 (s, 1H), 3.95 (s, 6H), 3.47-3.40 (m, 2H), 3.38 (m, 3H), 2.96 (ddd, *J* = 12.3, 9.2, 3.0 Hz, 2H), 2.12 (ddd, *J* = 12.8, 6.5, 3.4 Hz, 2H), 1.88-1.79 (m, 2H); HRMS (+ESI) m/z calcd for C₁₇H₂₂ClN₂O₃, 337.1319, found, 337.1324.



#### Disubstituted analouge of 111c

Isolated from the synthesis of **111c** as a yellow solid (85 mg). ¹H NMR (400 MHz, Chloroform-d)  $\delta$  7.10 (s, 2H), 6.37 (s, 1H), 4.10 (dt, *J* = 13.1, 4.7 Hz, 2H), 3.98 (s, 3H), 3.94 (s, 3H), 3.45-3.37 (m, 10H), 3.27-3.19 (m, 2H), 2.92-2.88 (m, 2H), 2.13 (ddt, *J* = 13.1, 6.3, 3.4 Hz, 2H), 2.07-1.99 (m, 2H), 1.86 (dtd, *J* = 12.5, 8.6, 3.5 Hz, 2H), 1.69-1.62 (m, 2H); ¹³C NMR (126 MHz, CDCl₃)  $\delta$  158.02, 157.65, 151.78, 145.95, 145.54, 112.96, 107.11, 102.40, 96.00, 76.64, 76.05, 55.92, 55.73, 55.59, 49.76, 43.47, 31.22, 30.67; HRMS (+ESI) m/z calcd for C₂₃H₃₄N₃O₄, 416.2549, found, 416.2545.

## X-ray crystal structure of 111a

*Crystal data for* **111a**: C₁₆H₂₀ClN₃O₂, M = 321.80, monoclinic,  $P2_1/c$  (no. 14), a = 9.9885(4), b = 8.6548(4), c = 18.3874(7) Å,  $\beta = 103.256(4)^{\circ}$ , V = 1547.21(11) Å³, Z = 4,  $D_c = 1.381$  g cm⁻³,  $\mu$ (Mo-K $\alpha$ ) = 0.258 mm⁻¹, T = 173 K, colourless plates, Agilent Xcalibur 3 E diffractometer; 3074 independent measured reflections ( $R_{int} = 0.0195$ ),  $F^2$  refinement,^{5, 6}  $R_1$ (obs) = 0.0379,  $wR_2$ (all) = 0.0900, 2522 independent observed absorption-corrected reflections [ $|F_0| > 4\sigma$ ( $|F_0|$ ),  $2\theta_{full} = 50^{\circ}$ ], 203 parameters. CCDC 1503377.

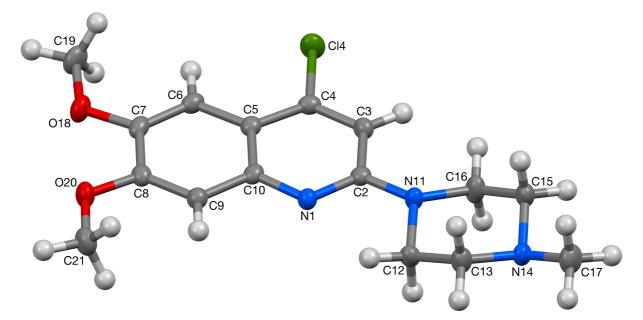



Fig. SF1 The crystal structure of 111a (50 % probability ellipsoids).

## References

- 1. S. Sundriyal, N. A. Malmquist, J. Caron, S. Blundell, F. Liu, X. Chen, N. Srimongkolpithak, J. Jin, S. A. Charman, A. Scherf and M. J. Fuchter, *ChemMedChem*, 2014, 9, 2360-2373.
- F. Liu, X. Chen, A. Allali-Hassani, A. M. Quinn, T. J. Wigle, G. A. Wasney, A. Dong, G. Senisterra, I. Chau, A. Siarheyeva, J. L. Norris, D. B. Kireev, A. Jadhav, J. M. Herold, W. P. Janzen, C. H. Arrowsmith, S. V. Frye, P. J. Brown, A. Simeonov, M. Vedadi and J. Jin, *J. Med. Chem.*, 2010, 53, 5844-5857.
- F. Liu, X. Chen, A. Allali-Hassani, A. M. Quinn, G. A. Wasney, A. Dong, D. Barsyte, I. Kozieradzki, G. Senisterra, I. Chau, A. Siarheyeva, D. B. Kireev, A. Jadhav, J. M. Herold, S. V. Frye, C. H. Arrowsmith, P. J. Brown, A. Simeonov, M. Vedadi and J. Jin, *J. Med. Chem.*, 2009, 52, 7950-7953.
- 4. N. Srimongkolpithak, S. Sundriyal, F. Li, M. Vedadi and M. J. Fuchter, *MedChemComm*, 2014, **5**, 1821-1828.
- 5. SHELXTL, Bruker AXS, Madison, WI.
- 6. G. Sheldrick, *Acta Crystallographica Section C*, 2015, **71**, 3-8.