Discovery of novel trimethoxy-ring BRD4 bromodomain inhibitors :

Alphascreening, crystallography, cell-based assay

Zhifeng Chen, ${ }^{\# a, b, c}$ Hao Zhang, ${ }^{\not t, c}$ Shien Liu, ${ }^{\neq b, c}$ Yiqian Xie, ${ }^{d}$ Hao Jiang, ${ }^{\text {b,c }}$ Wenchao Lu, ${ }^{\text {b,c }}$ Heng Xu, ${ }^{\text {b,c }}$ Liyan Yue, ${ }^{\text {b,c }}$ Yuanyuan Zhang, ${ }^{\text {wb }}$ Hong Ding, ${ }^{* b, d}$ Mingyue Zheng ${ }^{\text {b }}$, Kunqian Yu ${ }^{\text {b }}$, Kaixian Chen ${ }^{\text {b }}$, Hualiang Jiang ${ }^{\text {a,b,c }}$ and Cheng Luo ${ }^{* b, c}$
a. Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
b. University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
c. School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
d. Wuxi AppTech, 288 Fute Road, Shanghai 200131, China

Corresponding authors: E-mail: Yuanyuan Zhang, 10110700070@fudan.edu.cn, Hong Ding, hding@simm.ac.cn and Cheng Luo, cluo@simm.ac.cn
Tel: +86-21-50806600
\# These authors contributed equally to this work.

qRT-PCR

MV-4-11 cells were used to test whether DC-BD-03 inhibits the expression of genes c-Myc, CDK6, Bcl-2, which are closely related to the function of BRD4 (Fu, L.-1., et al.). Cells were treated with compounds of different concentrations or DMSO for 6 h. Total RNA was extracted with the UNIQ-10 Column total RNA Purification Kit (Sangon Biotech). Using oligo (dT)20 primer and reverse transcriptase, cDNA was created by using the HiScript ${ }^{\circledR}$ II RT SuperMix for PCR (Vazyme). Reverse transcription and quantitative PCR were performed as the protocol that Vazyme supplied, using SYBR-GREEN (Vazyme, Low Rox for QuantStudio 6 Flex applied Biosystems by life technologies) for BCL2 (primer: GTTTCAAATCAGCTATAACTGGAG; reverse: TAATATCAGTCTACTTCCTCTGTG), CDK6 (primer: TCTAACCTCAGTGGTCGTCAC ; reverse: TTCTCCTGGGAGTCCAATCAC), C-Myc (primer: GTGCTCCATGAGGAGACACC; reverse: GCACCTCTTGAGGACCAGTG), and $\beta 2$-microglobulin (primer: AAGTTGACTTACTGAAGAATGGAG; reverse: ATGCTGCTTACATGTCTCGATC) purchased from Sangon Biotech. Expression levels were normalized to that of β-Actin were calculated using a standard curve and the relative quantization method as described in ABI User.

Figure S1. The inhibitory activity of several compounds in Table 1 at different concentrations against the first bromodomain of BRD4. The IC_{50} valueswere calculated and the curveswere plotted using the software GraphPad.

Figure S2. The hydrogen bonds and hydrophobic contacts formed by compound DC-BD-29 with the first bromodomain of BRD4, revealed by the solved crystal structure.

Figure S3. The cellular inhibition of compound I-BET151 against the MV4-11 cells, the IC_{50} values are 115.1 nM for three days after treatment and 103.9 nM for seven days after treatment.

Figure S4. Compound I-BET151 decreased the expression of BRD4 downstream genes Bcl-2, c-Myc, and CDK6, after incubation for 6 hours, at the concentrations of $10 \mu \mathrm{M}$ and $30 \mu \mathrm{M}$.

Figure S5. The effect of compound DC-BD-03 against the protein abundance of Bcl-2 and CDK6, at different concentrations, in comparison with the positive control I-BET151.

Table S1. The information for top 50 compounds in the first round AlphaScreen assay.

NO.
Structure
$50 \mu \mathrm{M}$ Inhibition(\%) ${ }^{\mathrm{a}}$

1

3

4

5

6

7

8

9

10

11

12

13

15

16

17

18

22

2

28

29

30

31

38

39

44

46

47

48

64.75
64.56

[^0]Table S2. The structures of DC-BD-03 series of compounds, and their inhibitory activities against the first bromodomain of BRD4, from binding with acetylated lysines. (Continued after Table 1).
Compound ID

DC-BD-34

DC-BD-35

Table S3. The IC50 of compound DC-BD-03 on other BET bromodomains.

Cpd

IC 50 $^{\text {c }}$ (uM) on
BRD2(1,2) BRD3(1,2) BRD4(2) BRDT(1)
$\begin{array}{ccccc}\text { DC-BD-03 } & 43 & >50 & >50\end{array}$
${ }^{\mathbf{c}}$ The value of IC_{50} was calculated from the Alphascreen assay.

Table S4. The inhibition rates of compound DC-BD-03 for different BRD proteins.

Target	Inh $\%$ at $100 \mu \mathrm{M}$	Inh $\%$ at $50 \mu \mathrm{M}$
BRD7	8%	N.I. ${ }^{\text {b }}$
BRD9	3%	N.I.
FLAZ	N.I.	N.I.
SMACAR	N.I.	N.I.

${ }^{\mathrm{b}}$ N.I. represents no inhibition.

Table S5. X-Ray diffraction data collection and refinement statistics.

Data Set Title	DC-BD-29
Wavelength	0.978
Resolution range	39.73-1.591 (1.648-1.591)
Space group	P 212121
Unit cell	32.32247 .29179 .466909090
Total reflections	218990 (20931)
Unique reflections	16972 (1636)
Multiplicity	12.9 (12.8)
Completeness (\%)	100 (100)
Mean I/sigma(I)	26.53 (11.28)
Wilson B-factor	11.75
R-merge	0.081 (0.244)
R-meas	0.085 (0.254)
CC1/2	0.999 (0.99)
CC*	1 (0.998)
Reflections used in refinement	16971 (1636)
Reflections used for R-free	873 (84)
R-work	0.163 (0.158)
R-free	0.190 (0.173)
CC(work)	0.964 (0.953)
CC(free)	0.968 (0.934)
Number of non-hydrogen atoms	1216
macromolecules	1037
ligands	22
Protein residues	125
RMS(bonds)	0.007
RMS(angles)	0.91
Ramachandran favored (\%)	98
Ramachandran allowed (\%)	1.6
Ramachandran outliers (\%)	0
Rotamer outliers (\%)	0.85
Clashscore	1.91
Average B-factor	15.09
macromolecules	13.34
ligands	23.10
solvent	25.49

[^0]: ${ }^{\text {a }}$ The value of inhibition was calculated from the Alphascreen assay.

