1 2	Supporting Information				
3	Novel Bipharmacophoric Inhibitors of the Cholinesterases with Affinity to the Muscarinic				
4	Receptors M_1 and M_2				
5					
6	Regina Messerer ^a , Clelia Dallanoce ^b , Carlo Matera ^b , Sarah Wehle ^a , Lisa Flammini ^c , Brian				
7	Chirinda ^d , Andreas Bock ^e , Matthias Irmen ^d , Christian Tränkle ^d , Elisabetta Barocelli ^c , Michael				
8	Decker ^a , Christoph Sotriffer ^a , Marco De Amici ^b , Ulrike Holzgrabe ^{a, *}				
9					
10	^a Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry,				
11	University of Würzburg, Am Hubland, 97074 Würzburg, Germany				
12	^b Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi",				
13	Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy				
14	^c Dipartimento di Farmacia, Università degli Studi di Parma, Parco Area delle Scienze, 27/A,				
15	43124 Parma, Italy				
16	^d Pharmacology and Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-				
17	Domagk-Straße 3, 53121 Bonn, Germany				
18	^e Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9,				
19	97078 Würzburg, Germany				
20					
21	Table of Contents				
22	- M ₂ binding experiments				
23	- M ₁ binding experiments				
24	- logP values				
25	- Sequence alignment for acetylcholinesterases				

26 Table S1: Numerical estimates of parameters from binding experiments characterizing the

27 interaction of the test compounds with the inverse orthosteric agonist NMS at muscarinic

- 28 M_2 receptors.
- 29

30		[³ H]NMS-dissociation		[³ H]NMS-	
31		KINETICS			
51	Compound	LogK _{X,diss}	n	logIC ₅₀	n
32		X O NMS-M ₂	slope	X O M ₂	slope
33	10-C7	-6.36*	-1.17	-8.38	-0.63
34		±0.04	±0.14	±0.08	±0.05**
35	10-C10	-6.94	-0.67	-8.24*	-0.98
55		±0.04	±0.05**	±0.09	±0.16
36	7b-C10	-7.18*	-0.77	-8.53	-0.76
37		±0.05	±0.08	±0.04	±0.05**
38	7a-C10	-5.57*	-0.88	-8.42	-0.63
39		±0.07	±0.13	±0.05	±0.04**
	7a-C6	-4.93* ^{, §}	-0.89	-6.03*	-0.98
40		± 0.03	±0.05	±0.02	±0.05
41					

42 logK_{X,diss}, log binding constant of the allosteric agent X for NMS-bound receptors measured as the 43 concentration of the test compound ligand that reduces the dissociation rate constant of [³H]NMS 44 dissociation by 50%; n: slope factor of the curve; logIC₅₀: log concentration of the test compound X reducing 45 the specific binding of the orthosteric radioligand [³H]NMS in the absence of X by 50%. The data shown are 46 mean values \pm S.E.M. of three to four experiments carried out in duplicate (dissociation) or triplicate 47 (equilibrium binding). *, value was determined with curve slope fixed to unity; **, value deviates significantly 48 from unity (F-test, P<0.05). §, value was taken from Bock et al. 2014. For further details see references Fang 49 et al. 2010 and detailed pharmacological procedures.

- 50
- 51
- 52
- 53
- 54

Figure S1: (A) Retardation of NMS dissociation expressed as concentration-effect curves of selected test-compounds on the dissociation rate constant $k_{.1}$ of the radioligand [³H]NMS to determine logK_{x,diss} as an affinity measure of the test compounds at M₂ receptors that are orthosterically blocked by NMS. (B) Test-compound induced inhibition of specific [³H]NMS (0.2 nM) equilibrium binding to estimate corresponding affinity measures at orthosterically unliganded M₂ receptors. Curves were obtained by logistic curve fitting. The data illustrated are mean values ± S.E.M. of three to four experiments carried out as (A) duplicate or (B) triplicate determinations.

72 Table S2: Numerical estimates of parameters from binding experiments characterizing the

- 73 interaction of selected test compounds with the inverse orthosteric agonist NMS at muscarinic
- M_1 receptors.

76		[³ H]NMS-dissociation kinetics		[³ H]NMS- equilibrium binding	
77	Compound	LogK _{X,diss}	n	logIC ₅₀	n
78		X O NMS-M ₁	slope	XO M ₁	slope
79	10-C7	-5.59*	-0.81	-7.49*	-0.98
80		±0.08	±0.12	±0.06	±0.14*
01	10-C10	-5.98* ^{,§}	-0.89 [§]	-7.72*	-1.05
81		±0.11	±0.20	±0.05	±0.11
82					

83 logK_{X,diss}, log binding constant of the allosteric agent X for NMS-bound receptors measured as the 84 concentration of the test compound ligand that reduces the dissociation rate constant of [³H]NMS 85 dissociation by 50%; n: slope factor of the curve; logIC₅₀: log concentration of the test compound X reducing 86 the specific binding of the orthosteric radioligand [³H]NMS in the absence of X by 50%. The data shown are 87 mean values \pm S.E.M. of three to four experiments carried out in duplicate (dissociation) or quadruplicate 88 (equilibrium binding). *, value was determined with curve slope fixed to unity; [§], values derived with bottom 89 plateau significantly different from zero (F-test, P<0.05). For further details see references Fang et al. 2010 90 and detailed pharmacological procedures.

Figure S2: (A) Retardation of NMS dissociation expressed as concentration-effect curves of selected test-compounds on the dissociation rate constant k_{-1} of the radioligand [³H]NMS to determine logK_{x,diss} as an affinity measure of the test compounds at M₁ receptors that are orthosterically blocked by NMS. (B) Test-compound induced inhibition of specific [³H]NMS (0.2 nM) equilibrium binding to estimate corresponding affinity measures at orthosterically unliganded M₁ receptors. Curves were obtained by logistic curve fitting. The data illustrated are mean values ± S.E.M. of three to four experiments carried out as (A) duplicate or (B) quadruplicate determinations.*, bottom plateau deviates significantly from zero (F-Test, P< 0.05).

113

- 115
- 116
- 117
- 118
- 119
- 120
- 121

- 122 Table S3: Experimentally determined logk` and calculated logP values of selected reference
- 123 substances.

Reference substance	logk`	logP ¹
Biphenyl	1.08	4.01
Ethylbenzene	0.87	3.15
Chlorobenzene	0.62	2.89
Toluene	0.66	2.73
Benzene	0.41	2.13
2-Phenylethanol	-0.01	1.36
Acetanilide	-0.22	1.00
2-Butanone	-0.35	0.30

- 137 Table S4: Experimentally determined k` and logk` values and calculated logP values of the hybrid
- 138 compounds.

Compound	k`	logk`	logP
7a-C7	0.60	-0.22	0.79
7a-C8	0.60	-0.22	0.78
7a-C9	0.60	-0.22	0.79
7a-C10	0.61	-0.21	0.80
8a-C4	1.27	0.11	1.55
8a-C6	0.74	-0.13	0.99
8a-C8	0.63	-0.20	0.83
6a-C6	0.63	-0.20	0.84
6b-C6	1.26	0.10	1.54
7b-C7	1.47	0.17	1.70
7b-C8	1.35	0.13	1.61
7b-C9	1.46	0.16	1.69
7b-C10	1.58	0.20	1.77
10-C10	6.96	0.84	3.28
10-C7	2.08	0.32	2.05

145 Sequence alignment

The identity and homology between *ee*AChE and *h*AChE amounts to 88% and 93%, respectively. Therefore, *ee*AChE can be used to replace *h*AChE in enzyme kinetic measurements. *Tc*AChE shows an identity and homology of about 57% and 73%, respectively, to both *ee*AChE and *h*AChE. The binding site of these three isoforms is highly conserved, with the replacement of Phe330 in *ee*AChE and *Tc*AChE by Tyr337 in *h*AChE as the main difference. Thus, *Tc*AChE can savely be used as model system for docking studies even though enzyme kinetic data may be obtained with other AChE isoforms.

153

154

155 Table S5: Sequence alignment of electric eel, torpedo californica and human AChE with identity

156 (left) and homology (right).

157

	Identity [%]			Homology [%]		
	<i>Tc</i> AChE	eeAChE	<i>h</i> AChE	<i>Tc</i> AChE	eeAChE	<i>h</i> AChE
<i>Tc</i> AChE	100	57.7	56.5	100	73.4	73.8
eeAChE	-	100	88.0	-	100	93.0
<i>h</i> AChE	-	-	100	-	-	100

158

159

160

161 Method:

Pairwise sequence alignment was carried out with the Needle program, using the
EBLOSUM62 matrix of EMBOSS v.6.3.1.² The PDB-IDs 4EY7 (human),³ 1C2O (electric eel)⁴
and 2CKM (torpedo californica)⁵ were taken for comparison.

165

166

167

- 168
- 169
- 170

171

172

174 References

175

- 176 1. C. Hansch, A. Leo and D. Hoekman, *Exploring QSAR: Volume 2: Hydrophobic, Electronic and*
- 177 Steric Constants, American Chemical Society, Waschington DC, 1995.
- 178 2. P. Rice, I. Longden and A. Bleasby, *Trends Genet.*, 2000, **16**, 276-277.
- 179 3. J. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin and J. J.
- 180 Height, J. Med. Chem., 2012, **55**, 10282-10286.
- 181 4. Y. Bourne, J. Grassi, P. E. Bougis and P. Marchot, *J. Biol. Chem.*, 1999, **274**, 30370-30376.
- 182 5. E. H. Rydberg, B. Brumshtein, H. M. Greenblatt, D. M. Wong, D. Shaya, L. D. Williams, P. R.
- 183 Carlier, Y. P. Pang, I. Silman and J. L. Sussman, J. Med. Chem., 2006, 49, 5491-5500.