Design, synthesis, and biological evaluation of new thiazolo[5,4-d]pyrimidine

derivatives as potent antiproliferative agents

Zhong-Hua Li, Xue-Qi Liu, Peng-Fei Geng, Jin-Lian Ma, Tao-Qian Zhao, Hao-Ming Wei

Bin Yu*, Hong-Min Liu*

Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China

Contents

 Experiment Characterization data of compounds 	S ₁	
	S ₂ S ₇	
3. ¹ HNMR and ¹³ CNMR spectra		

1. Experiment

1.1 MTT assay: Exponentially growing cells were seeded into 96-well plates at a concentration of 3,000 cells per well. After 24 h of incubation, the culture medium was removed and fresh medium containing various concentrations of the candidate compounds was added to each well. The cells were then incubated for 72 h, thereafter MTT assays were performed and cell viability was assessed at 570 nm by a microplate reader (Biotech, Shanghai, China).

1.2 General procedure for the synthesis of compounds 7a-j

The intermediate derivatives **5a~b** were synthesized following the previously reported procedure.¹ Then the isothiocyanate analogs reacted with **5a~b** under alkaline conditions (cesium carbonate) in acetonitrile to give the key active intermediates **6a~f.**² The mixture of **6** (1 eq), appropriate amine (1.1 eq) and TEA (2 eq) in isopropanol was refluxed for 6 h and monitored by TLC (PE/EA = 4:1 ~ 1:1). After the completion of the reaction, the reaction mixture was cooled to room temperature and diluted with ethyl acetate, then washed with water for three times. The organic phase was dried with anhydride sodium sulfate and concentrated under reduced

vacuum. The residue was purified by flash column chromatography (PE/EA = $4:1 \sim 1:1$) to give the target products.

2. Characterization data of compounds

Compound 7a

White solid, yield 61 %, Mp 188~189 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.55 (s, 1H), 7.59-7.61 (m, 2H), 7.35-7.39 (m, 2H), 7.01-7.05 (m, 1H), 4.14 (br, 4H), 3.48-3.50 (t, J = 5.2 Hz, 4H), 3.02-3.05 (t, J = 7.1 Hz, 2H), 1.66-1.71 (m, 2H), 1.44 (s, 9H), 0.97-1.00 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 161.87, 161.09, 154.51, 153.89, 151.35, 140.19, 129.05, 125.40, 122.21, 117.62, 79.12, 45.12, 32.32, 28.03, 22.47, 13.27. HR-MS (ESI): Calcd. C₂₃H₃₀N₆O₂S₂, [M+H]⁺m/z: 487.1950, found: 487.1945.

Compound 7b

White solid, yield 52 %, Mp 170~172 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.80 (s, 1H), 7.62-7.64 (m, 2H), 7.29-7.33 (m, 2H), 6.97-7.00 (m, 1H), 4.16 (br, 4H), 2.99-3.03 (t, *J* = 7.2 Hz, 2H), 2.44-2.46 (t, *J* = 5.1 Hz, 4H), 2.22 (s, 3H), 1.65-1.70 (m, 2H), 0.96-0.99 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.71, 161.07, 154.32, 151.36, 140.37, 128.85, 125.25, 121.93, 117.52, 54.55, 45.67, 45.23, 32.32,

22.54, 13.26. HR-MS (ESI): Calcd. $C_{19}H_{24}N_6S_2$, $[M+H]^+m/z$: 401.1582, found: 401.1581.

Compound 7c

Gray solid, yield 55 %, Mp 179~180 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.51 (s, 1H), 7.59-7.61 (m, 2H), 7.34-7.38 (m, 2H), 7.00-7.04 (m, 1H), 4.16 (br, 4H), 3.01-3.04 (t, *J* = 7.2, 2H), 2.49-2.51 (t, *J* = 5.0 Hz, 4H), 2.34-2.39 (m, 2H), 1.63-1.72 (m, 2H), 1.02-1.06 (t, *J* = 7.1 Hz, 3H), 0.96-1.00 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.85, 160.94, 154.26, 151.35, 140.24, 129.04, 125.23, 122.12, 117.56, 52.34, 51.54, 45.33, 32.30, 22.52, 13.27, 11.88. HR-MS (ESI): Calcd. C₂₀H₂₆N₆S₂, [M+H]⁺m/z: 415.1739, found: 415.1736.

Compound 7d

White solid, yield 58 %, Mp 158~160 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.45 (s, 1H), 6.94 (s, 2H), 4.16 (m, 4H), 3.78 (s, 6H), 3.63 (s, 3H), 3.00-3.04 (t, J = 7.2 Hz, 2H), 2.44-2.46 (t, J = 5.0 Hz, 4H), 2.33-2.38 (m, 2H), 1.65-1.70 (m, 2H), 1.01-1.04 (t, J = 7.1 Hz, 3H), 0.96-1.00 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.26, 161.44, 154.69, 153.48, 151.81, 136.82, 133.05, 125.82, 95.65, 60.61, 56.05, 52.72, 52.00, 45.67, 32.79, 23.02, 13.77, 12.28. HR-MS (ESI): Calcd. C₂₃H₃₂N₆O₃S₂, [M+H]+m/z: 505.2056, found: 505.2057.

Compound 7e

White solid, yield 75 %, Mp 188~190 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.83 (s, 1H), 7.97 (m, 1H), 7.33-7.40 (m, 2H), 7.06 (m, 1H), 4.44 (m, 4H), 3.01-3.05 (t, J = 7.2 Hz, 2H), 2.76-2.79 (t, J = 4.9 Hz, 4H), 1.66-1.71 (m, 2H), 0.97-1.00 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.82, 160.94, 154.37, 151.74, 141.96, 133.92, 131.14, 125.75, 122.10, 117.28, 116.51, 48.70, 32.83, 27.00, 23.02, 13.79. HR-MS (ESI): Calcd. C₁₈H₂₀ClN₅S₃, [M+H]⁺m/z: 438.0648, found: 438.0647.

Compound 7f

Pink solid, yield 62 %, Mp 180~182 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.80 (s, 1H), 8.03 (m, 1H), 7.31-7.35 (m, 5H), 7.24-7.29 (m, 2H), 7.01-7.04 (m, 1H), 4.15 (m, 4H), 3.52 (s, 2H), 3.34 (s, 2H), 3.01 (t, J = 7.2 Hz, 2H), 2.51-2.53 (m, 4H), 1.64-1.69 (m, 2H), 0.95-0.98 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.80, 161.59, 154.29, 151.96, 141.99, 138.21, 133.87, 131.05, 129.51, 128.63, 127.50, 125.43, 122.00, 117.38, 116.53, 62.42, 53.05, 45.82, 32.80, 22.98, 13.76. HR-MS (ESI): Calcd. C₂₅H₂₇ClN₆S₂, [M+H]⁺m/z: 511.1505, found: 511.1505.

Compound 7g

Pale yellow solid, yield 74 %, Mp 176~177 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.48 (s, 1H), 8.32-8.34 (m, 1H), 7.74-7.78 (m, 1H), 7.11-7.14 (m, 1H), 6.99-7.02 (m, 1H), 4.19 (m, 4H), 3.46-3.49 (t, *J* = 5.3 Hz, 4H), 3.04-3.07 (t, *J* = 7.0 Hz, 2H), 1.67-1.72 (m, 2H), 0.97-1.01 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.88, 161.79, 153.88, 151.93, 151.69, 151.15, 146.36, 138.37, 123.54, 116.91, 111.05, 79.13, 44.96, 32.32, 28.02, 22.56, 13.28. HR-MS (ESI): Calcd. C₂₂H₂₉N₇O₂S₂, [M+H]⁺m/z: 488.1902, found: 488.1905.

Compound 7h

Pale yellow solid, yield 82 %, Mp 175~177 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.43 (s, 1H), 8.22-8.25 (m, 1H), 8.05-8.08 (m, 1H), 7.96-7.99 (m, 1H), 7.74-7.76 (m, 1H), 7.52-7.59 (m, 3H), 4.09 (m, 4H), 3.41-3.44 (t, *J* = 5.2 Hz, 4H), 3.02-3.05 (t, *J* = 7.0 Hz, 2H), 1.65-1.71 (m, 2H), 1.43 (s, 9H), 0.96-1.00 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.76, 161.34, 156.89, 153.86, 151.32, 135.51, 133.94, 128.30, 126.40, 126.21, 125.87, 125.82, 125.24, 124.37, 122.22, 117.93, 79.11, 54.86, 45.06, 32.31, 28.03, 22.49, 13.26. HR-MS (ESI): Calcd. C₂₇H₃₂N₆O₂S₂, [M+H]⁺m/z: 537.2106, found: 537.2105.

Compound 7i

Pink solid, yield 59 %, Mp 175~177 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.59 (s, 1H), 7.59-7.61 (m, 2H), 7.41-7.43 (m, 2H), 7.29-7.37 (m, 4H), 7.22-7.25 (m, 1H), 7.00-7.04 (m, 1H), 4.36 (s, 2H), 4.16 (m, 4H), 2.42-2.45 (t, J = 5.0 Hz, 4H), 2.22 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 161.79, 161.32, 154.97, 151.83, 140.69, 138.73, 129.55, 129.19, 128.82, 127.36, 125.89, 122.70, 118.10, 54.99, 46.07, 45.72, 35.03. HR-MS (ESI): Calcd. C₂₃H₂₄N₆S₂, [M+H]⁺m/z: 449.1582, found: 449.1580.

Compound 7j

Pale yellow solid, yield 68 %, Mp 130~133 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 10.54 (s, 1H), 7.59-7.61 (m, 2H), 7.41-7.43 (m, 2H), 7.35-7.39 (m, 2H), 7.30-7.33 (m, 2H), 7.22-7.26 (m, 1H), 7.02-7.06 (m, 1H), 4.37 (s, 2H), 4.14 (m, 4H), 3.45-3.47 (t, *J* = 5.2 Hz, 4H), 1.43 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6) δ 161.36, 160.95, 154.69, 153.88, 151.34, 140.14, 138.18, 129.10, 128.70, 128.34, 126.89, 125.55, 122.32, 117.68, 79.13, 45.19, 34.57, 28.03. HR-MS (ESI): Calcd. C₂₇H₃₀N₆O₂S₂, [M+H]⁺m/z: 535.1950, found: 535.1953.

3. ¹H NMR and ¹³C NMR spectra

-10.796

References

1. Li ZH, Yang DX, Geng PF, et al. Design, synthesis and biological evaluation of [1,2,3]triazolo[4,5-d]pyrimidine derivatives possessing a hydrazone moiety as antiproliferative agents. *European journal of medicinal chemistry*. 2016;124: 967-980.

2. Liu J, Patch RJ, Schubert C, Player MR. Single-step syntheses of 2-amino-7-chlorothiazolo[5,4-d]pyrimidines: intermediates for bivalent thiazolopyrimidines. *J Org Chem.* 2005;70(24): 10194-10197.