Supplementary Material

	10	20	30	40	50	60 70
3EML	IMGS <mark>SV</mark> Y <mark>ITV</mark> EL.	AIAVLAILGNV	LVCWAVWLNSN	LQNVTNYFVVSI	AAADIAVGVLAI	P F A I T I S T G F C A A C H G
TRANSMEM						
CCK2R	A I R I T L Y A	VIFLMSVGGNM	LIIVVLGLSRR	L R T V T N <mark>A F L L S I</mark>	AVSDLLLAVACM	P F T L L P N L M G T F I F G T V I
TRANSMEM						
2544		90 10				140 150
TRANCMEM	CLFIACEVLVLI	QSSIFSLLAIA	IDRYIAIRIPL	RYNGLVIGIRA	CGIIAICWVLS	
CCK2R	CKAVSYLMCVSV	SVSTISIVATA			RVIVATWLLSCL	MVPVPVVTVVOPVCPPV
TRANSMEM						
	160	170	180	190	200 210	220
3EML		<mark></mark>	F	A I G L T P M L (WNNCG Q :	SQGCGEGQVACLFED
TRANSMEM						
CCK2R	LQCVHRWPSARV	RQTWSVLLLL	LFFIPGVVMAV	A Y G L I S R E L Y L (S R V R N Q G G L P G A V H Q N G R
TRANSMEM						
254		250 Z	260	270		
JEMIL	VVPMNYMVYFNF	FACVLVPLLLM		AKS		IIVGLFALCWLPLHIINC
CCK2R	CRRETCANCEDS			C P C S C S R P T O A		VIVVIEL CWIEVYSANT
TRANSMEM	CREET GARGE DS					VIVVEN EGWENVISK
in a sheric in	310	320	330	340 350	360	370 380
3EML	FTFECPDCSHAP	LWLMYLAIV	LSHTNSVVNPF	IYAYRIREFRQ1	FRKIIRSHVLRQ	
TRANSMEM						
CCK2R	WRAEDGPGAHRA	LSGAPISFIHL	LSYASACVNPL	V Y C F M H R R F R Q A	CLETCARCC	
TRANSMEM						

Figure S1: Alignment of CCK-2R with template PDB ID : 3EML. The regions shown in orange represent the trans-membrane regions.

Figure S2: Errat score

FigureS3:Ramachandran plot of CCK2R homology model showing phi & psi angles in 2D graphical representation.

Figure S4: RMSD graph of CCK2R simulation. The X-axis shows the time interval in nanosecond (ns) whereas Y-axis represents backbone deviation in nanometer (nm).

Figure S5: 2D representation of potential energy variation during MD simulation of CCK2R protein. In plot, the x-axis represents the simulation time in picosecond(ps) and y-axis shows potential energy in KJ/mol. The potential energy during simulation is stabilized at approximately -1.546×10^{6} kj/mol.

ADMET PLOT:

The compounds were subjected to ADMET calculations. Parameters such as aqueous solubility, absorption, plasma protein binding, cytochrome P450 2D6 inhibition, and hepatotoxicity were all determined using the ADMET protocol in DS4.0 (Table TS1). Moreover, the toxicity potential (ie, carcinogenicity and mutagenicity) of the compounds was also predicted using the TOPKAT (TOxicity Prediction by Komputer Assisted Technology) protocol in DS4.0 (Table TS2).

1. The human intestinal absorption model

As seen in Fig S6, our all compounds lie within the 95% and 99% confidence ellipses and their predicting value lies in 0-1 range (Table TS1), hence all the compounds showed good absorption.

2. The blood brain barrier model

As seen in Fig S6, our 9 out of 15 compounds are out of outside the 95% and 99% confidence ellipsoids, therefore no prediction can be made for them. For rest of the 6 compounds, BBB values are in 2-4 range (Table TS1) which demarcates them into low penetrants category which indicates that our compounds can be used for tumour regression and will not BBB to give hazardous side-effects.

3. Aqueous Solubility

As seen in Table TS1, our compounds log (Sw) lies in range of 1-2 values, which demarcates all these compounds into low solubility group.

- 4. The **cytochrome P450 2D6 (CYP2D6)** model predicts CYP2D6 enzyme inhibition using 2D chemical structure as input. CYP2D6 is involved in the metabolism of a wide range of substrates in the liver and its inhibition by a drug constitutes majority cases of drug-drug interaction. The impact of CYP2D6 activity differs on a drug-by-drug basis, depending on whether CYP2D6 is involved in the activation or inactivation of the drug.
- 5. The **plasma protein binding model** predicts whether a compound is likely to be highly bound (>= 90% bound) to carrier proteins in the blood. Plasma protein binding of drug molecules can affect the efficiency of a drug, because the bound fraction is temporarily shielded from metabolism. On the other hand, only the unbound fraction exhibits pharmacological effects.

FIG S6: Plot of polar surface area (PSA) versus ALogP for all compounds, showing the 95% and 99% confidence limit ellipses corresponding to the blood brain barrier (BBB) and intestinal absorption.

Compo	AlogP	PSA_2D	Intestinal absorption ^a	CYP2D6	Plasma protein	Aqueous	BBB
			absorption	binding	binding ^d	solubility	penetration
4b	3.82	86.221	0 (good)	False (non-	True (highly	2 (low)	2 (medium)
				inhibitor)	bounded)		
4c	3.998	86.221	0 (good)	False (non-	True (highly	1 (poor)	2 (medium)
				inhibitor)	bounded)		
4d	3.998	86.221	0 (good)	False (non-	True (highly	1 (poor)	2 (medium)
				inhibitor)	bounded)		
4e	4.082	86.221	0 (good)	False (non-	True (highly	1 (poor)	2 (medium)
				inhibitor)	bounded)		
3g	5.245	79.337	1 (moderate)	False (non-	True (highly	1 (poor)	4 (undefined)
				inhibitor)	bounded)		
4a	3.666	95.151	0 (good)	False (non-	True (highly	2 (low)	3 (Poor)
				inhibitor)	bounded)		
3a	4.21	117.453	1 (moderate)	False (non-	True (highly	2 (low)	4 (undefined)
				inhibitor)	bounded)		
3d	3.878	108.523	1 (moderate)	False (non-	True (highly	2 (low)	4 (undefined)
				inhibitor)	bounded)		
3c	4.626	108.523	1 (moderate)	False (non-	True (highly	1 (poor)	4 (undefined)
				inhibitor)	bounded)		
3e	5.245	79.337	1 (moderate)	False (non-	True (highly	1 (poor)	4 (undefined)
				inhibitor)	bounded)		
3f	4.626	108.523	1 (moderate)	False (non-	True (highly	1 (poor)	4 (undefined)
				inhibitor)	bounded)		
3b	4.626	108.523	1 (moderate)	False (non-	True (highly	1 (poor)	4 (undefined)
				inhibitor)	bounded)		
1365	4.176	74.897	0 (good)	False (non-	True (highly	2 (low)	2 (medium)
				inhibitor)	bounded)		
yf476	3.905	116.269	1 (moderate)	False (non-	True (highly	2 (low)	4 (undefined)
				inhibitor)	bounded)		
ym022	5.918	92.198	2 (poor)	False (non-	True (highly	1 (poor)	4 (undefined)
				inhibitor)	bounded)		

Table TS1: ADMET predicted using ADMET protocol in DS4.0

Notes:

ADMET_Absorption_T2_2D is the Mahalanobis distance for the compound in the ADMET_PSA_2D, ADMET_AlogP98 plane. It is referenced from the center of the region of the chemical space defined by well-absorbed compounds.

^bThe prediction whether a compound is a cytochrome P450 2D6 inhibitor was classified using the cutoff Bayesian score of 0.161 obtained by minimizing the total number of false positives and false negatives.

^cThe prediction whether a compound is hepatotoxic was classified using the cutoff Bayesian score of -4.154 obtained by minimizing the total number of false positives and false negatives.

^dThe prediction whether a compound is highly bound (\geq 90% bound) to plasma proteins was classified using the cutoff Bayesian score of –2.209 obtained by minimizing the total number of false positives and false negatives.

Abbreviations: ADMET, absorption, distribution, metabolism, excretion, and toxicity; DS4.0, Discovery Studio 4.0.**AlogP**, the logarithm of the partition coefficient between n-octanol and water; **PSA**, polar surface area, **CYP450** cytochrome P450, **PPB** plasma protein binding, **BBB** blood brain barrier.

COMPOUND NAME	ΤΟΡΚΑΤ_WOE	TOPKAT_AMES	TOPKAT_DTP	TOPKAT SKIN IRRITANCY
4b	Non-Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
4c	Non-Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
4d	Non-Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
4e	Non-Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
3g	Non-Carcinogen	Non-Mutagen	Toxic	Non-Irritant
4a	Non-Carcinogen	Non-Mutagen	Toxic	Non-Irritant
За	Non-Carcinogen	Non-Mutagen	Toxic	Non-Irritant
3d	Non-Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
3c	Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
Зе	Non-Carcinogen	Non-Mutagen	Toxic	Non-Irritant
3f	Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
3b	Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
1365	Non-Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
yf476	Non-Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant
ym022	Non-Carcinogen	Non-Mutagen	Non-Toxic	Non-Irritant

Table TS2: Toxicity predicted using the TOPKAT DS 4.0