Supporting Information

Membrane-Active Antimicroial Poly(Amino-Modified Alkyl) b-Cyclodextrins Synthesized via Click Reactions

Hatsuo Yamamura, *^{ab} Miho Nonaka,^b Shingo Okuno,^b Ryogo Mitsuhashi,^b Hisato Kato,^c Takashi Katsu,^c Kazufumi Masuda,^d Koichi Tanimoto,^e Haruvoshi Tomita,^f Atsushi Mivagawa^{ab} ^a Life and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan ^b Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan ^c School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama-shi, Okayama 703-8516, Japan ^d Graduate School of Clinical Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Nakaku, Okayama-shi, Okayama 703-8516, Japan ^e Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan ^f Department of Bacteriology and Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan

Contents

Spectral data of Boc-protected aminoalkynes **20-33** and **34-38**, and CD derivatives **1-19**, table of MIC values of the clinically isolated drug-resistant gram-positive MRSA, *E. faecuum*, *E. faecalis*, VRE, and *S. agalactiae* strains against the conventional antibiotics (Table 1) and data of resistance development study of CD **6** against *S. aureus* and the K⁺ efflux and the cell viability of *S. aureus* and *E. coli* on the addition of CD **6**.

Spectral data of *N*-alkyl-Boc-propargylamines 20-33 for preparation of CD secondary amines.

N-butyl-Boc-propargylamine (20). ¹H NMR (400 MHz, CDCl₃) d 0.93 (t, *J* = 7.2, 6H, CH₃-), 1.26-1.36 (2H, CH₃-<u>CH₂</u>-), 1.47 (9H, s, Boc), 1.49-1.57 (1H, (CH₃-CH₂-<u>CH₂</u>-),

2.18 (1H, CH=C-), 3.31 (t, J = 7.6, 2H, $-CH_2 \underline{CH_2}$ -N), 4.05 (2H, N- $\underline{CH_2}$ -C=); ¹³C NMR (125 MHz, CDCl₃) d 13.8, 20.0, 28.1-28.7, 30.2, 35.9, 46.3, 71.2, 80.0, 155.2; Found: C, 64.49; H, 10.33; N, 5.80%. Calcd for C₁₂H₂₁NO₂·0.75H₂O: C,64.20; H, 10.09; N, 6.08%.

N-cyclopropylmethyl-Boc-propargylamine (21). ¹H NMR (400 MHz, CDCl₃) d 0.23-0.27 (2H, -CH₂- of cPr), 0.48-0.52 (2H, -CH₂- of cPr), 0.98 (1H, CH), 1.48 (9H, s, Boc), 2.19 (1H, CH=C-), 3.22 (d, J = 6.8, 2H, -<u>CH₂-</u>CH-), 4.15 (2H, N-<u>CH₂-</u>C=); ¹³C NMR (125 MHz, CDCl₃) d 3.46, 9.66, 28.5, 35.7, 50.4, 71.4, 79.9, 80.2, 155.1; Found: C, 69.07; H, 8.90; N, 6.61%. Calcd for C₁₂H₁₉NO₂: C, 68.87; H, 6.69; N, 6.69%.

N-pentyl-Boc-propargylamine (22). ¹H NMR (400 MHz, CDCl₃) d 0.90 (t, J = 6.8, 3H, CH₃-), 1.24-1.37 (4H, CH₃-<u>CH₂-CH₂-), 1.47</u> (9H, s, Boc), 1.52-1.59 (2H, CH₃-CH₂-CH₂-), 2.18 (1H, CH=C-), 3.30 (t, J = 7.6, 2H, -CH₂-<u>CH₂-N), 4.03 (2H, N-CH₂-C=);</u> ¹³C NMR (125 MHz, CDCl₃) d 14.1, 22.5, 28.5, 29.0, 35.8, 36.5, 46.6, 71.3, 80.1, 155.3; Found: C, 66.13; H, 10.59; N, 5.86%. Calcd for C₁₃H₂₃NO₂·0.55H₂O: C,66.38; H, 10.33; N, 5.95%.

N-3-methylbutyl-Boc-propargylamine (23). ¹H NMR (400 MHz, CDCl₃) d 0.92-0.93 (6H, CH₃-), 1.42-1.47 (11H, -<u>CH₂</u>-CH₂-N, Boc), 1.53-1.58 (1H, (CH₃)₂<u>CH</u>-), 2.19 (1H, CH≡C-), 3.32 (t, J = 7.6, 2H, -<u>CH₂</u>-N), 4.05 (2H, N-<u>CH₂</u>-C≡); ¹³C NMR (125 MHz, CDCl₃) d 22.7, 25.9, 28.5, 35.8, 37.0, 45.0, 71.4, 80.0, 80.1, 155.3; Found: C, 66.28; H, 10.83; N, 5.95%. Calcd for C₁₃H₂₃NO₂·0.6H₂O: C,66.15; H, 10.63; N, 5.93%.

N-cyclobutylmethyl-Boc-propargylamine (24). ¹H NMR (400 MHz, CDCl₃) d 1.47 (9H, s, Boc), 1.70-1.75, 1.83-1.91, 1.99-2.06 (6H, CH₂ of cyclobutyl), 2.19 (1H, CH≡C-), 2.54-2.62 (CH of cyclobutyl), 3.36 (d, J = 7.2, 2H, -<u>CH₂</u>-CH-), 4.03 (2H, N-<u>CH₂-C≡</u>); ¹³C NMR (100 MHz, CDCl₃) d 18.5, 26.4, 28.5, 34.5, 35.8, 51.4, 71.3, 79.9, 80.1, 155; Found: C, 65.40; H, 9.24; N, 5.97%. Calcd for C₁₃H₂₁NO₂·0.8H₂O: C, 65.68; H, 9.58; N, 5.89%.

N-hexyl-Boc-propargylamine (25). ¹H NMR (400 MHz, CDCl₃) d 0.89 (t, J = 6.8, 3H, CH₃-), 1.26-1.33 (6H, CH₃-(<u>CH₂)</u>₃-), 1.47 (9H, s, Boc), 1.51-1.56 (2H, -<u>CH₂</u>-CH₂-N), 2.19 (1H, CH=C-), 3.30 (t, J = 7.6, 2H, -CH₂-<u>CH₂-N), 4.05 (2H, N-CH₂-C=); ¹³C NMR (100 MHz, CDCl₃) d 14.1, 22.7, 26.5, 28.1, 28.5, 31.6, 35.9-36.4, 46.6, 71.2, 80.0, 155.2; Found: C, 66.86; H, 11.10; N, 5.57%. Calcd for C₁₄H₂₅NO₂·0.7H₂O: C, 66.74; H, 10.89; N, 5.56%.</u>

N-4-methylpentyl-Boc-propargylamine (26). ¹H NMR (400 MHz, CDCl₃) d 0.87-0.89 (6H, CH₃-), 1.13-1.19 (2H, (CH₃)₂CH-<u>CH₂</u>-), 1.47 (9H, Boc), 1.52-1.59 (3H, (CH₃)₂<u>CH</u>-CH₂-<u>CH₂</u>-), 2.18 (1H, CH≡C-), 3.28 (t, J = 7.6, 2H, -<u>CH₂</u>-N), 4.05 (2H, N-<u>CH₂</u>-C≡); ¹³C NMR (125 MHz, CDCl₃) d 22.6, 25.8, 27.7-28.4, 35.9, 46.7, 71.1, 79.98, 155; Found: C, 67.99; H, 10.43; N, 5.60%. Calcd for C₁₄H₂₅NO₂·0.4H₂O: C,68.20; H, 10.55; N, 5.68%.

N-2-ethylbutyl-Boc-propargylamine (27). ¹H NMR (400 MHz, CDCl₃) d 0.90 (t, $J = 7.2, 6H, CH_3$ -), 1.26-1.34 (4H, CH₃-<u>CH₂</u>-), 1.47 (9H, s, Boc), 1.53-1.58 (1H, (CH₃-CH₂)<u>2CH</u>-), 2.18 (1H, CH≡C-),3.23 (d, $J = 8.0, 2H, CH-<u>CH_2</u>$ -N), 3.96-4.06 (2H, N-<u>CH₂</u>-C≡); ¹³C NMR (125 MHz, CDCl₃) d 10.9,11.0, 23.3, 23.5, 28.1, 28.2, 28.4, 28.7, 36.1, 36.8, 39.2,39.7, 44.0, 49.6, 70.9,71.4, 79.8,80.2, 82.3, 83.9, 155.6, 163.6; Found: C, 69.18; H, 10.54; N, 5.73%. Calcd for C₁₄H₂₅NO₂·0.2H₂O: C,69.21; H, 10.54; N, 5.77%.

N-cyclopentylmethyl-Boc-propargylamine (28). ¹H NMR (400 MHz, CDCl₃) d 1.18-1.26 (2H, CH₂ of cyclopentyl), 1.47 (9H, s, Boc), 1.54-1.56, 1.64-1.72 (4H, CH₂ of cyclopentyl), 2.15 (2H, CH of cyclopentyl, CH≡C-), 3.25 (d, J = 7.6, 2H, -<u>CH₂-N</u>), 4.00-4.07 (2H, N-<u>CH₂-C≡); ¹³C NMR (100 MHz, CDCl₃) d 25.1, 28.5, 30.4, 31.1, 38.8, 50.9, 71.3, 79.9, 80.1, 15; Found: C, 69.59; H, 10.06; N, 5.78%. Calcd for C₁₄H₂₃NO₂·0.25H₂O: C, 69.53; H, 9.79; N, 5.79%.</u>

N-heptyl-Boc-propargylamine (29). ¹H NMR (400 MHz, CDCl₃) d0.88 (t, J = 6.8, 3H, CH₃-), 1.21-1.34 (8H, CH₃-(<u>CH₂)4</u>-), 1.47 (9H, s, Boc), 1.53-1.59 (2H, -<u>CH₂</u>-CH₂-N), 2.19 (1H, CH=C-), 3.30 (t, J = 7.2, 2H, -CH₂-<u>CH₂-N), 4.04 (2H, N-CH₂-C=); ¹³C NMR (125 MHz, CDCl₃) d 14.17, 22.65, 26.80, 28.01, 28.39-28.61, 28.99, 31.81, 35.79, 46.54, 71.30, 80.03, 154.96; Found: C, 69.55; H, 10.49; N, 5.59%. Calcd for C₁₅H₂₇NO₂·2H₂O: C, 69.62; H, 10.75; N, 5.41%.</u>

N-3-methylhexyl-Boc-propargylamine (30). ¹H NMR (400 MHz, CDCl₃) d 0.87-0.91 (6H, CH₃-), 1.12-1.17 (1H), 1.26-1.61 (15H), 2.19 (1H) (CH₂ and CH of 3methylhexyl), 3.32 (t, J = 7.6, 2H, -<u>CH₂-N</u>)), 4.05 (2H, N-<u>CH₂-C</u> \equiv); ¹³C NMR (125 MHz, CDCl₃) d 14.5, 19.7, 28.5, 30.4, 35.01, 35.8, 39.3, 44.8, 71.4, 80.0, 155.3.

N-cyclohexylmethyl-Boc-propargylamine (31). ¹H NMR (400 MHz, CDCl₃) d 0.82-1.01, 1.06-1.31, 1.47, 1.54-1.75 (20H, CH₂ and CH of cyclohexy, Boc), 2.18 (1H, CH≡C-), 3.16 (d, J = 7.2, 2H, -<u>CH₂-N</u>), 3.96-4.06 (2H, N-<u>CH₂-C</u>≡); ¹³C NMR (125 MHz, CDCl₃) δ 26.0, 26.6, 30.9, 36.4, 28.5, 36.7, 52.8, 70.9, 80.1, 155.5; Found: C, 68.75; H, 9.85; N, 5.72%. Calcd for C₁₅H₂₅NO₂·0.59H₂O: C, 68.77; H, 10.07; N, 5.35%

N-benzyl-Boc-propargylamine (32). The spectral data was agreement with the reported.¹¹H NMR (400 MHz, CDCl₃) d 1.49 (s, 9H, Boc), 2.21 (s, 1H, CH=C-), 3.91-4.04 (2H, N-<u>CH₂-C=), 4.55 (2H, benzene-CH₂-), 7.26-7.35 (5H, benzene).</u>

N-phenylethyl-Boc-propargylamine (33). ¹H NMR (400 MHz, CDCl₃) d 1.51 (s, 9H, Boc), 2.21 (s, 1H, CH=C-), 2.87 (2H, benzene-<u>CH₂-), 3.54 (2H, -<u>CH₂-N), 3.82-4.13</u> (2H, N-<u>CH₂-C=), 7.19-7.31 (5H, benzene); Found: C, 61.38; H, 8.47; N, 4.28%. Calcd for C₁₆H₂₁NO₂· 3.0H₂O: C, 61.32; H, 8.68; N, 4.47%</u></u>

Spectral data of Boc-protected aminoalkyne 34-38 for preparation of CD primary amines.

1-hexyl-Boc-propargylamine (34). ¹H NMR (400 MHz, CDCl₃) d 0.88 (t, J = 6.8, 3H, CH₃-), 1.29-1.31 (6H, CH₃-(^aCH₂)₄-), 1.41-1.45 (11H, CH₃-(^bCH₂)₄-, Boc), 1.61-1.66 (2H, -(CH₂)₄-<u>CH₂</u>-CH-), 2.25 (d, J = 2.4, 1H, CH=C-), 4.39 (1H, -(CH₂)₄-CH₂-<u>CH</u>-), 4.68 (1H, Boc-<u>NH</u>-); Found: C, 69.86; H, 10.54; N, 5.34%. Calcd for C₁₄H₂₅NO₂·0.1CH₃COOCH₂CH₃ C, 69.58; H, 10.51; N, 5.71%.

Boc-9-amino-nonine (35). ¹H NMR (400 MHz, CDCl₃) d 1.30-1.54 (19H, -NH-CH₂-(<u>CH₂)₄-CH₂-CH₂-, Boc</u>), 1.94 (1H, CH=C-), 2.16-2.20 (2H, -NH-CH₂-(CH₂)₄-CH₂-<u>CH₂-), 3.08-3.13 (2H, -NH-CH₂-), 4.54 (1H, Boc-<u>NH</u>-); Found: C, 69.86; H, 10.54; N, 5.34%. Calcd for C₁₅H₂₈NO₂·0.26CH₃COOCH₂CH₃: C, 69.48; H, 10.93; N, 5.05%.</u>

1-cyclohexylmethyl-Boc-propargylamine (36). ¹H NMR (400 MHz, CDCl₃) d 1.76 (22H, cyclohexlmethyl, Boc), 2.25 (s, 1H, CH=C-), 4.40-4.52 (1H, Boc-NH-<u>CH</u>-), 4.53-4.69 (1H, Boc-<u>NH</u>-CH-); Found: C, 72.17; H, 10.38; N, 5.34%. Calcd for $C_{15}H_{25}NO_{2} \cdot 0.1CH_{3}(CH_{2})_{4}CH_{3}$: C,72.46; H, 10.72; N, 5.12%.

Boc-1-benzyl-propargylamine (37). The spectral data was agreement with the reported.² ¹H NMR (400 MHz, CDCl₃) d 1.43 (s, 9H, Boc), 2.28 (s, 1H, CH=C-), 2.91-3.01 (2H, benzene-<u>CH₂-), 4.62-4.72 (2H, -NH-CH-), 7.26-7.31 (5H, benzene).</u>

1-phenlethyl-Boc-propargylamine (38). The spectral data was agreement with the reported.³ ¹H NMR (400 MHz, CDCl₃) d 1.45 (s, 9H, Boc), 1.93-2.02 (2H, benzene-CH₂-<u>CH₂-), 2.33 (s, 1H, CH≡C-), 2.74-2.79 (2H, benzene-CH₂-CH₂-), 4.44 (1H, -NH-<u>CH</u>-), 4.70 (1H, -<u>NH</u>-CH-), 7.19-7.27 (5H, benzene).</u>

Spectral data of CDs 1-19.

n-butyl-aminomethyl CD (1). ¹HNMR (500 MHz, DMSO-*d*₆): d 0.85 (21H, CH₃-), 1.26, 1.54 (28H, CH₃-<u>CH₂-CH₂-), 2.50 (14H, -CH₂-<u>CH₂-NH-), 3.22-3.29 (14H, CD-2,4), 3.71 (7H, CD-3), 4.08 (21H, CD-5, -NH-<u>CH₂-triazole), 4.08-4.80 (14H, CD-6), 5.06 (7H, CD-1), 8.07 (7H, triazole), 9.23 (14H, -NH₂⁺-), ¹³CNMR (125 MHz, DMSO-*d*₆): d 13.47, 13.52 (CH₃-), 19.29 (CH₃-<u>CH₂-), 27.39 (CH₃-CH₂-<u>CH₂-), 40.88 (N-<u>CH₂-triazole), 46.03 (-CH₂-<u>CH₂-NH-), 49.66 (CD-6, phenyl-<u>CH₂-), 69.45 (CD-5), 71.76 (CD-2), 72.34 (CD-3), 82.39 (CD-4), 101.75 (CD-1), 127.18 (CHtriazole), 138.25 (Ctriazole), MS (MALDI): m/z 2110.13 [M+Na]⁺, Calcd for C₉₁H₁₅₄N₂₈NaO₂₈: 2110.14, Found: C, 42.12; H, 5.42; N, 12.54%. Calcd for C₉₁H₁₅₄N₂₈O₂₈+10TFA: C, 42.03; H, 5.28; N, 12.59%.</u></u></u></u></u></u></u></u>

cycloprpylmethyl-aminomethyl CD (2). ¹HNMR (500 MHz, DMSO-*d*₆): d 0.29-0.33, 0.54-0.55 (28H, CH₂ of c-Pr), 1.01 (7H, CH of c-Pr), 2.79-2.81 (14H, c-Pr-<u>CH₂-</u> NH-), 3.21-3.29 (14H, CD-2,4), 3.70-3.74 (7H, CD-3), 4.08-4.13 (21H, CD-5, -NH-<u>CH₂-</u> triazole), 4.30-4.60 (14H, CD-6), 5.06 (7H, CD-1), 5.99, 6.13 (14H, OH), 8.05 (7H, triazole), 9.31 (14H, $-NH_2^+-$), $^{13}CNMR$ (125 MHz, DMSO-*d*₆): d 3.88, 3.91 (CH₂ of c-Pr), 6.87 (CH of c-Pr), 40.38 (N-<u>CH₂</u>-triazole), 49.59 (CD-6), 46.03 (c-Pr-<u>CH₂-NH-), 69.44 (CD-5), 71.71 (CD-2), 72.26 (CD-3), 82.28 (CD-4), 101.69 (CD-1), 127.09 (CHtriazole), 138.31 (Ctriazole), MS (MALDI): m/z 2074.05 [M+H]⁺, Calcd for C₉₁H₁₄₂N₂₈O₂₈: 2074.05, Found: C, 42.27; H, 5.11; N,12.90%. Calcd for C₉₁H₁₄₁N₂₈O₂₈+3.0H₂O+8.0TFA: C, 42.30; H, 5.48; N, 12.54%.</u>

n-pentyl-aminomethy CD (3). ¹HNMR (400 MHz, DMSO-*d*₆): d 0.82-0.86 (21H, CH₃-), 1.23-1.28 (28H, CH₃-<u>CH₂-CH₂-), 1.54-1.56 (14H, -<u>CH₂-CH₂-NH-), 2.87 (14H, -CH₂-<u>CH₂-NH-), 3.20-3.28 (14H, CD-2,4), 3.72 (7H, CD-3), 4.07 (21H, CD-5, -NH-<u>CH₂-triazole), 4.37-4.55 (14H, CD-6), 5.06 (7H, CD-1), 5.97, 6.12 (14H, OH), 8.05 (7H, triazole), 9.14 (14H, -NH₂⁺-), ¹³CNMR (100 MHz, DMSO-*d*₆): d 13.62 (CH₃-), 21.59, 24.97, 28.03 (CH₃-<u>CH₂-CH₂-CH₂-CH₂-CH₂-NH-), 40.14 (N-<u>CH₂-triazole), 46.22 (-CH₂-<u>CH₂-NH-), 49.60 (CD-6), 69.45 (CD-5), 71.73 (CD-2), 72.28 (CD-3), 82.33 (CD-4), 101.71 (CD-1), 127.10 (CHtriazole), 138.26 (Ctriazole), MS (MALDI): m/z 2208.25 [M+Na]⁺, Calcd for C₉₈H₁₆₈N₂₈NaO₂₈: 2208.25, Found: C, 43.90; H, 6.04; N,12.44%. Calcd for C₉₈H₁₆₈N₂₈O₂₈+5.0H₂O+7.0TFA: C, 43.75; H, 6.06; N, 12.75%.</u></u></u></u></u></u></u>

3-methylbutyl-aminomethyl CD (4). ¹HNMR (400 MHz, DMSO-*d*₆): d0.84, 0.85 (42H, CH₃-), 1.40-1.50 (14H, (CH₃)₂CH-<u>CH₂-</u>), 1.50-1.60 (7H, (CH₃)₂CH-CH₂-), 2.91 (14H, -CH₂-<u>CH₂-</u>NH-), 3.20-3.30 (14H, CD-2,4), 3.72 (7H, CD-3), 4.07 (21H, CD-5, - NH-<u>CH₂-triazole), 4.37-4.56 (14H, CD-6), 5.06 (7H, CD-1), 5.97, 6.12 (14H, OH), 8.05 (7H, triazole), 9.17 (14H, -NH₂⁺-), ¹³CNMR (100 MHz, DMSO-*d*₆): d 22.06 (CH₃-), 25.30 ((CH₃)₂CH-CH₂-), 34.01 (CH-<u>CH₂-NH-), 40.15 (N-<u>CH₂-triazole), 44.81 (-CH₂-CH₂-NH-), 49.94 (CD-6), 69.42 (CD-5), 71.72 (CD-2), 72.28 (CD-3), 82.33 (CD-4), 101.71 (CD-1), 127.08 (CHtriazole), 138.28 (Ctriazole), MS (MALDI): m/z 2208.24 [M+Na]⁺, Calcd for C₉₈H₁₆₈N₂₈NaO₂₈: 2208.25, Found: C, 39.50; H, 5.16; N,10.52%. Calcd for C₉₈H₁₆₈N₂₈O₂₈+5.0H₂O+13TFA: C, 39.62; H, 5.12; N, 10.43%.</u></u></u>

cyclobutylmethyl-aminomethyl CD (5). ¹HNMR (500 MHz, DMSO-*d*₆): d 1.65-2.10 (42H, CH₂ of c-butyl), 2.56-2.59 (7H, CH of c-butyl), 2.94 (14H, c-butyl-<u>CH₂</u>-NH-), 3.15-3.30 (14H, CD-2,4), 3.72 (7H, CD-3), 3.95-4.20 (21H, CD-5, -NH-<u>CH₂</u>-triazole), 4.30-4.60 (14H, CD-6), 5.06 (7H, CD-1), 5.80-6.20 (14H, OH), 8.05 (7H, triazole), 9.23 (14H, -NH₂⁺-), ¹³CNMR (125 MHz, DMSO-*d*₆): d 17.80, 25.72 (CH₂ of c-butyl), 31.41 (CH of c-butyl)), 40.89 (N-<u>CH₂</u>-triazole), 49.61 (CD-6), 51.10 (c-butyl-<u>CH₂</u>-NH-), 69.43 (CD-5), 71.74 (CD-2), 72.38 (CD-3), 82.28 (CD-4), 101.71 (CD-1), 127.21 (CHtriazole), 138.23 (Ctriazole), MS (MALDI): m/z 2172.16 [M+H]⁺, Calcd for

 $C_{98}H_{155}N_{28}O_{28}$: 2172.16, Found: C, 43.48; H, 5.50; N,12.16%. Calcd for $C_{98}H_{154}N_{28}O_{28}$ +8.0H₂O+7.1TFA: C, 43.11; H, 5.71; N, 12.55%.

n-hexyl-aminomethyl CD (6). ¹HNMR (400 MHz, DMSO-*d*₆): d 0.82-0.85 (21H, CH₃-), 1.23-1.25 (42H, CH₃-<u>CH₂-CH₂-CH₂-), 1.54 (14H, -<u>CH₂-CH₂-NH-), 2.90 (14H, -CH₂-<u>CH₂-NH-), 3.20-3.34 (14H, CD-2,4), 3.71 (7H, CD-3), 4.06 (21H, CD-5, -NH-<u>CH₂-triazole), 4.25-4.60 (14H, CD-6), 5.06 (7H, CD-1), 5.80-6.20 (14H, OH), 8.04 (7H, triazole), 9.02 (14H, -NH₂⁺-), ¹³CNMR (100 MHz, DMSO-*d*₆): d 13.78 (CH₃-), 21.85, 25.29, 25.60, 30.71 (CH₃-<u>CH₂-CH₂-CH₂-CH₂-NH-), 40.81 (N-<u>CH₂-triazole), 46.28 (-CH₂-<u>CH₂-NH-), 49.60 (CD-6), 69.46 (CD-5), 71.72 (CD-2), 72.27 (CD-3), 82.35 (CD-4), 101.71 (CD-1), 127.11 (CHtriazole), 138.24 (Ctriazole), MS (MALDI): m/z 2306.36 [M+Na]⁺, Calcd for C₁₀₅H₁₈₄N₂₈O₂₈: 2306.36, Found: C, 43.39; H, 6.35; N,11.57%. Calcd for C₁₀₅H₁₈₄N₂₈O₂₈+12H₂O+7.0TFA: C, 43.32; H, 6.51; N, 11.89%.</u></u></u></u></u></u></u>

4-methylpentyl-aminomethyl CD (7). ¹HNMR (400 MHz, DMSO-*d*₆): d 0.82-0.84 (42H, CH₃-), 1.11-1.16 (14H, (CH₃)₂CH-<u>CH₂-</u>), 1.45-1.60 (21H, (CH₃)₂CH-CH₂-<u>CH₂-</u>), 2.86 (14H, -<u>CH₂-</u>NH-), 3.23-3.30 (14H, CD-2,4), 3.72 (7H, CD-3), 4.06 (21H, CD-5, - NH-<u>CH₂-triazole), 4.36-4.56 (14H, CD-6), 5.06 (7H, CD-1), 5.98-6.12 (14H, OH), 8.05 (7H, triazole), 9.16 (14H, -NH₂⁺-), ¹³CNMR (100 MHz, DMSO-*d*₆): d 22.56 (CH₃-), 23.65 (CH₃)₂CH-CH₂-<u>OH₂-</u>), 27.42 (CH₃)₂CH-CH₂-), 35.36 ((CH₃)₂CH-<u>CH₂-</u>), 41.28 (N-<u>CH₂-triazole), 46.94 (-<u>CH₂-NH-), 50.07 (CD-6), 69.92 (CD-5), 72.12 (CD-2), 72.67 (CD-3), 82.70 (CD-4), 102.11 (CD-1), 127.52 (CHtriazole), 138.61 (Ctriazole), MS (MALDI): m/z 2284.43 [M+H]⁺, Calcd for C₁₀₅H₁₈₃N₂₈NaO₂₈: 2284.38, Found: C, 45.04; H, 6.33; N,12.22%. Calcd for C₁₀₅H₁₈₂N₂₈O₂₈+5.0H₂O+7.0TFA: C, 45.05; H, 6.32; N, 12.36%.</u></u></u>

2-ethylbutyl-aminomethy CD (8). ¹HNMR (400 MHz, DMSO-*d*₆): d 0.76-0.79 (42H, CH₃-), 1.25-1.34 (28H, CH₃-<u>CH₂-), 1.54-1.57 (7H, (CH₃-CH₂)₂<u>CH</u>-), 2.81 (14H, -<u>CH₂-NH-), 3.18-3.40 (14H, CD-2,4), 3.73 (7H, CD-3), 4.06-4.11 (21H, CD-5, -NH-<u>CH₂-</u> triazole), 4.43-4.58 (14H, CD-6), 5.06 (7H, CD-1), 5.96-6.12 (14H, OH), 8.08 (7H, triazole), 9.06 (14H, -NH₂⁺-), ¹³CNMR (100 MHz, DMSO-*d*₆): d 10.46 (CH₃-), 22.88 (CH₃-<u>CH₂-), 37.68 ((CH₃-CH₂)₂<u>CH</u>-), 35.36 ((CH₃)₂CH-<u>CH₂-), CH-<u>CH₂-</u>NH-), 41.91 (N-<u>CH₂-triazole), 49.56 (-<u>CH₂-NH-), 50.00 (CD-6), 69.78 (CD-5), 72.11 (CD-2), 72.68</u> (CD-3), 82.61 (CD-4), 102.09 (CD-1), 127.72 (CHtriazole), 138.56 (Ctriazole), MS (MALDI): m/z 2284.46 [M+H]⁺, Calcd for C₁₀₅H₁₈₃N₂₈NaO₂₈: 2284.38, Found: C, 44.24; H, 6.00; N,11.51%. Calcd for C₁₀₅H₁₈₂N₂₈O₂₈+2.0H₂O+9.0TFA: C, 44.14; H, 5.87; N, 11.72%.</u></u></u></u></u>

cyclopentylmethyl-aminomethyl CD (9). ¹HNMR (500 MHz, DMSO-d6): d 1.11-1.28, 1.41-1.62, 1.68-1.78 (56H, CH₂ of c-pentyl), 2.10 (7H, CH of c-pentyl), 2.85 (14H, CH-<u>CH₂-NH-), 3.19-3.36 (14H, CD-2,4), 3.72 (7H, CD-3), 4.08 (21H, CD-5, triazole-</u> <u>CH</u>₂-N), 4.30, 4.60 (14H, CD-6), 5.06 (7H, CD-1), 8.06 (7H, triazole), 9.15 (14H, -NH₂⁺-), ¹³CNMR (125 MHz, DMSO-d6): d 24.59, 30.11 (CH₂ of c-pentyl), 36.36 (CH of cpentyl), 41.27 (triazole-<u>CH</u>₂-N), 49.61 (CD-6), 51.03 (CH-<u>CH</u>₂-NH-), 69.43 (CD-5), 71.74 (CD-2), 72.28 (CD-3), 82.25 (CD-4), 101.80 (CD-1), 127.31 (CHtriazole), 138.17 (Ctriazole), MS (MALDI): m/z 2292.25 [M+Na]⁺, Calcd for C₁₀₅H₁₆₈N₂₈NaO₂₈: 2292.25, Found: C, 44.52; H, 6.03; N,11,67%. Calcd for C₁₀₅H₁₆₈N₂₈O₂₈+5H₂O+8.0TFA: C, 44.40; H, 5.73; N, 11.98%.

n-heptyl-aminomethyl CD (10). ¹HNMR (500 MHz, DMSO-d6): d 0.84 (21H, CH₃), 1.23 (56H, CH₃-(<u>CH₂)4</u>-CH₂-), 1.55 (14H, CH₃-(CH₂)4-<u>CH₂-), 2.87 (14H, -<u>CH₂-NH-), 3.21-3.29 (14H, CD-2,4), 3.67 (7H, CD-3), 4.00 (21H, CD-5, triazole-<u>CH₂-N), 4.34, 4.51 (14H, CD-6), 5.06 (7H, CD-1), 5.98, 6.13 (14H, OH), 8.07 (7H, triazole), 9.19 (14H, -NH₂⁺-), ¹³CNMR (125 MHz, DMSO-d6): d 13.90 (CH₃), 21.98, 25.39, 28.21, 31.01 (CH₃-(<u>CH₂)4</u>-CH₂-), 25.39 (CH₃-(CH₂)4-<u>CH₂-), 40.84 (triazole-<u>CH₂-N), 46.32 (-CH₂-NH-), 49.59 (CD-6), 69.48 (CD-5), 71.71 (CD-2), 72.25 (CD-3), 82.34 (CD-4), 101.70 (CD-1), 127.06 (CHtriazole), 138.33 (Ctriazole), MS (MALDI): m/z 2404.46 [M+Na]⁺, Calcd for C₁₁₂H₁₉₆N₂₈NaO₂₈: 2404.47, Found: C, 45.95; H, 6.50; N,11,53%. Calcd for C₁₁₂H₁₉₆N₂₈O₂₈+7H₂O+7.0TFA: C, 45.76; H, 6.61; N, 11.86%.</u></u></u></u></u>

3-methylhexyl-aminomethyl CD (11). ¹HNMR (500 MHz, DMSO-*d*₆): d 0.82 (42H, CH₃-), 1.07-1.58 (49H, CH₃-(CH₂)₂CHCH₂-), 2.92 (14H, -CH₂-NH-), 3.23-3.29 (14H, CD-2,4), 3.72 (7H, CD-3), 4.06 (21H, CD-5, -NH-CH2-triazole), 4.36, 4.53 (14H, CD-6), 5.06 (7H, CD-1), 5.98, 6.13 (14H, OH), 8.03 (7H, triazole), 9.22 (14H, -NH₂⁺-), ¹³CNMR (125 MHz, DMSO-*d*₆): d 19.10 (CH₃-), 19.36 (CH₃-, CH₃-CH₂-), 29.79 (CH), 32.19, 38.39 (CH₂), 41.38 (N-CH₂-triazole), 44.80 (-CH₂-NH-), 49.61 (CD-6), 69.45 (CD-5), 71.76 (CD-2), 72.31 (CD-3), 82.38 (CD-4), 101.75 (CD-1), 127.11 (CHtriazole), 138.34 (Ctriazole), MS (MALDI): m/z 2382.50 [M+H⁺], Calcd for C₁₁₂H₁₉₆N₂₈NaO₂₈: 2382.49, Found: C, N,11.25%. Calcd for 45.35; H, 6.96; C₁₁₂H₁₉₆N₂₈O₂₈+10.3H₂O+7.0TFA: C, 44.95; H, 6.69; N, 11.65%.

cyclohexylmethyl-aminomethyl CD (12). ¹HNMR (500 MHz, DMSO-d6): d 0.70-0.95, 1.10-1.30, 1.50-1.80 (77H, CH₂ and CH of c-hexyl), 2.75 (14H, CH-<u>CH₂-NH-)</u>, 3.20-3.29 (14H, CD-2,4), 3.70 (7H, CD-3), 4.07 (21H, CD-5, triazole-<u>CH₂-N), 4.30, 4.60 (14H, CD-6), 5.06 (7H, CD-1), 5.80-6.20 (14H, OH), 8.05 (7H, triazole), 9.16 (14H, -NH₂⁺-), ¹³CNMR (125 MHz, DMSO-d6): d 24.99, 25.51, 29.92 (CH₂ of c-hexyl), 34.34 (CH of c-hexyl), 41.37 (triazole-<u>CH₂-N), 49.61 (CD-6), 51.08 (CH-<u>CH₂-NH-), 69.41 (CD-5), 71.71 (CD-2), 72.25 (CD-3), 82.26 (CD-4), 101.67 (CD-1), 127.27 (CHtriazole), 138.12 (Ctriazole), MS (MALDI): m/z 2368.38 [M+H]⁺, Calcd for C₁₁₂H₁₈₃N₂₈O₂₈:</u></u></u>

2368.38, Found: C, 45.58; H, 6.40; N,11,47%. Calcd for $C_{112}H_{182}N_{28}O_{28}+8.0H_2O+7.0TFA$: C, 45.38; H, 6.28; N, 11.76%.

benzyl-aminomethyl CD (13). ¹HNMR (400 MHz, DMSO-d6): d 3.13-3.39 (14H, CD-2,4), 3.74 (7H, CD-3), 4.00-4.15 (35H, CD-5, phenyl-<u>CH2</u>-, triazole-<u>CH2</u>-N), 4.44-4.45 (14H, CD-6), 5.07 (7H, CD-1), 5.98, 6.12 (14H, CD-OH), 7.37 (35H, phenyl), 8.06 (7H, triazole), 9.45-9.80 (14H, $-NH2^+$ -), ¹³CNMR (100 MHz, DMSO-d6): d 41.40 (triazole-<u>CH2</u>-N), 49.99 (CD-6, phenyl-<u>CH2</u>-), 70.01 (CD-5), 72.15 (CD-2), 72.71 (CD-3), 83.69 (CD-4), 102.11 (CD-1), 127.27 (CHtriazole), 129.15, 129.45, 130.37, 132.23 (phenyl), 138.71 (Ctriazole), MS (MALDI): m/z 2348.66 [M+Na]⁺, Calcd for C₁₁₂H₁₄₂N₂₈NaO₂₈: 2348.03, Found: C, 45.55; H, 4.87; N,11,96%. Calcd for C₁₁₂H₁₄₂N₂₈O₂₈+10H₂O+7.0TFA: C, 45.79; H, 5.09; N, 11.87%.

phenylethyl-aminomethyl CD (14). ¹HNMR (400 MHz, DMSO-d6): d 2.88-2.90 (14H, phenyl-<u>CH</u>₂-), 3.13-3.39 (28J, CD-2,4, -CH₂-<u>CH</u>₂-N), 3.74 (t, J = 7.3, 7H, CD-3), 4.10-4.22 (21H, CD-5, triazole-CH2-N), 4.43-4.57 (14H, CD-6), 5.05 (7H, CD-1), 5.99-6.12 (14H, CD-OH), 7.17-7.31 (35H, phenyl), 8.05 (7H, triazole), 9.25-9.50 (14H, -NH2⁺-), ¹³CNMR (100 MHz, DMSO-d6): d 33.91 (phenyl-CH2-), 42.30 (triazole-CH2-N), 47.77 (-CH₂-CH₂-N), 50.02 (CD-6), 69.82 (CD-5), 72.26 (CD-2), 72.73 (CD-3), 82.71 (CD-4), 102.14 (CD-1), 127.21 (CHtriazole), 127.51, 128.91 (phenyl), 137.42 (Ctriazole), 138.69 (phenyl), MS (MALDI): m/z 2446.77 [M+Na]⁺, Calcd for C₁₁₉H₁₅₄N₂₈NaO₂₈: 2446.14, Found: C, 47.91; H, N,11,74%. Calcd 5.08; for C₁₁₉H₁₅₄N₂₈O₂₈+7.0H₂O+7.0TFA: C, 47.70; H, 5.21; N, 11.71%.

1-amino-heptyl CD (15). ¹HNMR (400 MHz, DMSO-d6): d 0.82 (t, J = 6.8, 21H, CH₃-), 1.15-1.28 (56H, CH₃-(CH₂)₄-), 1.82 (14H, -(CH₂)₄-(CH₂-), 3.12 (t, J = 8.8, 7H, CD-4), 3.26 (7H, CD-2), 3.73 (t, J = 8.8, 7H, CD-3), 4.12 (7H, CD-5), 4.35 (7H, NH₃⁺-<u>CH</u>), 4.63 (14H, CD-6), 5.05 (7H, CD-1), 5.95, 6.09 (14H, CD-OH), 8.10 (7H, triazole), 8.46 (21H, NH₃⁺), ¹³CNMR (100 MHz, DMSO-d6): d 14.30 (CH₃-), 22.40, 25.08, 27.51, 28.57, 31.37 (CH₃-(CH₂)₄-), 33.21 (-(CH₂)₄-CH₂-), 47.27 (NH₃⁺-CH), 50.12 (CD-6), 69.95 (CD-5), 72.11 (CD-2), 72.67 (CD-3), 82.30 (CD-4), 102.08 (CD-1), 125.51 (CHtriazole), 144.54 (Ctriazole), MS (MALDI): m/z 2306.40 [M+Na]⁺, Calcd for C₁₀₅H₁₈₂N₂₈NaO₂₈: 2306.36, Found: C. 43.68; H. 6.14: N.11.32%. Calcd for C₁₀₅H₁₈₂N₂₈O₂₈+10H₂O+10TFA: C, 43.71; H, 5.93; N, 11.42%.

7-amino-heptyl CD (16). ¹HNMR (400 MHz, DMSO-d6): d 1.13-1.58 (70H, NH₃⁺⁻CH₂-(<u>CH₂)</u>₅-CH₂-), 2.28-2.38, 2.72-2.77 (28H, NH₃⁺⁻CH₂-(CH₂)₅-<u>CH₂</u>-), 3.19-3.28 (14H, CD-2,4), 3.69 (7H, CD-3), 4.00 (7H, CD-5), 4.18-4.41 (14H, CD-6), 5.05 (7H, CD-1), 5.92-6.05 (14H, CD-OH), 7.62 (7H, triazole), 7.77 (21H, NH₃⁺), ¹³CNMR (100 MHz, DMSO-d6): d 25.12, 27.44, 28.76, 29.03, 29.17, 29.33 (NH₃⁺-CH₂-(<u>CH₂)</u>₅-CH₂-), 39.54

 $(NH_3^+-\underline{CH_2}-)$, 49.79 (CD-6), 70.06 (CD-5), 72.33 (CD-2), 72.76 (CD-3), 83.28 (CD-4), 102.15 (CD-1), 123.65 (CHtriazole), 147.05 (Ctriazole), MS (MALDI): m/z 2306.41 [M+Na]⁺, Calcd for C₁₀₅H₁₈₂N₂₈NaO₂₈: 2306.36, Found: C, 44.42; H, 6.11; N,11.67%. Calcd for C₁₀₅H₁₈₂N₂₈O₂₈+3.0H₂O+8.5TFA: C, 44.30; H, 5.99; N, 11.86%.

1-amino-2-cyclohexylethyl CD (17). ¹HNMR (400 MHz, DMSO-d6): d 0.85-1.78 (91H, <u>cyclohexyl-CH₂-</u>), 3.09 (t, J = 8.8, 7H, CD-4), 3.26 (7H, CD-2), 3.74 (t, J = 8.8, 7H, CD-3), 4.16 (7H, CD-5), 4.48 (7H, NH₃⁺-<u>CH</u>), 4.69 (14H, CD-6), 5.05 (7H, CD-1), 5.91, 6.03 (14H, CD-OH), 8.12 (7H, triazole), 8.45 (21H, NH₃⁺), ¹³CNMR (100 MHz, DMSO-d6): d 25.82, 26.29, 32.45, 32.99, 33.41, 39.53 (cyclohexyl-CH₂-), 45.09 (NH₃⁺⁻CH), 50.10 (CD-6), 69.85 (CD-5), 72.10 (CD-2), 72.68 (CD-3), 82.14 (CD-4), 102.14 (CD-1), 125.49 (CHtriazole), 144.75 (Ctriazole), MS (MALDI): m/z 2390.31 [M+Na]⁺, Calcd for C₁₁₂H₁₈₂N₂₈NaO₂₈: 2390.36, Found: C, 45.41; H, 5.52; N,11.07%. Calcd for C₁₁₂H₁₈₂N₂₈O₂₈+4.0H₂O+9.0TFA: C, 45.32; H, 5.45; N, 10.74%.

1-amino-2-phenylethyl CD (18). ¹HNMR (400 MHz, DMSO-d6): d 2.82-3.02 (7H, CD-4), 3.12-3.18 (14H, CD-2, CH₂ of benzyl), 3.19-3.32 (7H, CH₂ of benzyl), 3.62-3.71 (7H, CD-3), 3.94-4.06 (7H, CD-5), 4.45-4.57 (14H, CD-6), 4.73 (7H, NH₃⁺-<u>CH</u>), 4.92 (7H, CD-1), 5.90, 6.08 (14H, CD-OH), 7.07-7.21 (35H, phenyl), 7.82 (7H, triazole), 8.59-8.73 (21H, NH3⁺), ¹³CNMR (100 MHz, DMSO-d6): d 39.76 (CH2 of benzyl), 48.20 (NH₃⁺-CH), 49.86 (CD-6), 69.72 (CD-5), 71.92 (CD-2), 72.62 (CD-3), 81.78 (CD-4), 101.82 (CD-1), 125.78 (CHtriazole), 127.40, 128.89, 129.66, 129.94, 136.13 (phenyl), 143.57 (Ctriazole), MS (MALDI): m/z 2347.94 [M+Na]⁺, Calcd for C₁₁₂H₁₄₀N₂₈NaO₂₈: 2348.03, C, 4.80; Found: 47.08; H, N,11.39%. Calcd for C₁₁₂H₁₄₀N₂₈O₂₈+7.0H₂O+9.0TFA: C, 46.95; H, 4.67; N, 11.79%.

1-amino-3-phenylpropyl CD (19). ¹HNMR (400 MHz, DMSO-d6): d 2.16 (14H, phenyl-CH₂-<u>CH₂-)</u>, 2.50 (14H, benzene-<u>CH₂-</u>CH₂-), 3.15 (7H, CD-4), 3.27 (7H, CD-2), 3.77 (t, J = 8.8, 7H, CD-3), 4.18 (7H, CD-5), 4.36 (7H, NH₃⁺-<u>CH-</u>), 4.67 (14H, CD-6), 5.09 (7H, CD-1), 5.96, 6.08 (14H, CD-OH), 7.07-7.25 (35H, phenyl), 8.15 (7H, triazole), 8.55 (21H, NH₃⁺), ¹³CNMR (100 MHz, DMSO-d6): d 31.17 (phenyl-CH₂-<u>CH₂-)</u>, 34.95 (phenyl-<u>CH₂-CH₂-), 46.86 (NH₃⁺-CH), 50.17 (CD-6), 69.89 (CD-5), 72.16 (CD-2), 72.67 (CD-3), 82.20 (CD-4), 102.07 (CD-1), 125.83, 126.58 (CHtriazole), 128.59, 128.90, 140.78 (phenyl), 144.14 (Ctriazole), MS (MALDI): m/z 2346.15 [M+Na]⁺, Calcd for C₁₁₉H₁₅₄N₂₈NaO₂₈: 2446.14, Found: C, 48.02; H, 4.62; N,11.41%. Calcd for C₁₁₉H₁₅₄N₂₈O₂₈+5.0H₂O+10.0TFA: C, 47.91; H, 4.74; N, 11.25%.</u>

Table 1. MIC values (mg cm⁻³) of the drug-resistant bacteria.

	VCM		TEIC		LZD		Synecid		ABK		MINO	LVFX		GM		CLDM
MRSA MS29202	1		1		2		1		1		R	R		R		R
	ABPC	1	MINO	V	VCM		M	CP	CPFX		GM	KM	SI	M	TEIC	C LZD
E. faecium MS29120	64		8		1 >1		28 8		64		>256	>256	>256 256		-	-
E. faecalis MS29030	1	3	32		4		2	8	2		16	32	6	54	-	-
VRE MS29016	128		0.125		>128		28	4	>128		>256	>256	3	32	0.5	2
	PCO	G	ABPC		IPM		CTX		MINO		CPFX	EM		C	LDM	GM
S. agalactiae Str.B-1	0.5		0.25		0.06		0.5		8		32	>12	>128		128	8

VCM;vancomycin, TEIC; teicoplanin, LZD; linezolid, ABK; arbekacin, MINO; minocycline, LVFX; levofloxacin, GM; gentamicin, CLDM; clindamycin, ABPC; ampicillin, EM; erythromycin, CP; chloramphenicol, CPFX, ciprofloxacin, GM; gentamicin, KM; kanamycin, SM; streptomycin, TEIC; teicoplanin, PCG; benzylpenicillin (penicillin G), IPM; imipenem, CTX; cefotaxime

Resistance development study of *S. aureus* by multipassage treatment of CD 6.⁴

MIC values of CD **6** and fosfomycin against *S. aureus* were determined as described in experimental section. For each MIC experiment, the bacterial cells exposed to the sub-MIC concentration (1/2 of MIC at that particular passage) were re-grown to a logarithmic growth phase, and re-used for the subsequent passage's MIC measurement for the same antimicrobial agents. The process was repeated and the changes of MIC values were monitored. We found that the MIC value of **6** remained the same (4 mg mL⁻¹) and in contrast, the MIC values of fosfomycin, which is a broad-spectrum antibiotic, started to increase after two passages, becoming >512 mg mL⁻¹ (>256 times greater) by the fifth passage. The results of this study indicate that the CD may be resistant to bacteria forming resistance to them.

Figure 1. MIC values of CD 6 and fosfomycin against *S. aureus* after the number of serial passages.

K⁺ efflux and the cell viability of bacteria on the addition of CD 6.

The membrane disrupting activity and bactericidal activity of CD **6** were examined. The *S. aureus* and *E. coli* cells were incubated with the CD **6** for 30 min at 37 °C. K⁺ efflux from the cells monitored by a K⁺ electrode, where changes to cell viability were simultaneously measured, as described in experimental section. The CD **6** showed significant K⁺ efflux against both the bacteria. Also, it was found that increases in the K⁺ efflux were proportional to decreases in the cell viability. The 30 min treatment with the CD **6** whose concentration was 10 times as that of MIC against the bacteria (*S. aureus*; 30 mM, *E. coli*; 50 mM) caused 10% or less viability. These results exhibited that the **6** disrupted the cytoplasmic membrane of *S. aureus* and therefore the CD **6** killed the bacteria.

Figure 2. Dose-dependence curves for the K⁺ efflux and the cell viability of *S. aureus* and *E. coli* on the addition of CD 6 ((a) *S. aureus* and (b) *E. coli*). The purple lines indicate K⁺ efflux, and the orange lines indicate cell viability. To determine the level of 100% K⁺ efflux, mellitin (10 mM for *S. aureus*) and polymyxin B (200 mg cm⁻³ for *E. coli*) were used

REFERENCES

(1) Yoshida, M.; Komatsuzaki, Y.; Ihara, M. Synthesis of 5-Vinylideneoxazolidin-2-ones by DBU-Mediated CO₂-Fixation Reaction of 4-(Benzylamino)-2-butynyl Carbonates and Benzoates. *Org. Lett.* **2008**, *10*, 2083-2086.

(2) Ko, E.; Liu, J.; Perez, L. M.; Lu,G.; Schefer, A.; Burgess, K. Universal Peptidomimetics. *J. Am. Chem. Soc.* **2011**, *133*, 462-477.

(3) Kiemele, E. R.; Wathier, M.; Bichler, P.; Love, J. A. Total Synthesis of K777: Successful Application of Transition-Metal-Catalyzed Alkyne Hydrothiolation toward the Modular Synthesis of a Potent Cysteine Protease Inhibitor. *Org. Lett.* **2016**, *18*, 492-495.

(4) Koh, J.-J.; Lin, S.; Aung, T. T.; Lim, F.; Zou, H.; Bai, Y.; Li, J.; Lin, H.; Pang, L. M.; Koh, W. L.; Salleh, S. M.; Lakshminarayanan, R.; Zhou, L.; Qiu, S.; Pervushin, K.; Verma, C.; Tan, D. T. H.; Cao, D.; Liu, S.; Beuerman, R. W. Amino Acid Modified Xanthone Derivatives: Novel, Highly Promising Membrane-active Antimicrobials for Multidrug-resistant Gram-positive Bacterial Infections. *J. Med. Chem.* **2015**, *58*, 739–752.