Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2017

Supporting information

Design of transition-metal-doped TiO_2 as a multipurpose support for fuel cell applications: using a computational high-throughput material screening approach

Meng-Che Tsai,[†] John Rick,[†] Wei-Nien Su,[‡] and Bing-Joe Hwang^{*,†,§}

[†]Nano Electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

[‡]Graduate Institute of Applied Science and Technology, National Taiwan University of Science and

Technology, Taipei 106, Taiwan

[§]National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

*Corresponding author: Bing-Joe Hwang (<u>bjh@mail.ntust.edu.tw</u>)

Figure S1 Bulk models of (a) anatase- TiO_2 and (b) anatase- $TiMO_2$ with 25 atomic percent of dopant M. The atomic ratio in the unit-cell is 3(Ti):1(M):8(O). White, red and Teal balls represent Ti, O and transition metal dopant (M), respectively. These bulk models are used to calculate electronic structure by HSE method.

Figure S2 Slab models of (a) anatase- TiO_2 (101), and (b) anatase- $TiMO_2$ (101) with around 30 atomic percent of dopant M. White, red and Teal balls represent Ti, O and transition metal dopant (M), respectively. Numbers of M on each layer is specified for the different $TiMO_2$ models.

Figure S3 Oxygen vacancy formations, created on (a) neighboring Ti-Ti site of anatase-TiO₂ (101), and (b) neighboring Ti-Ti and Ti-M sites of anatase-TiMO₂ (101). White, red and teal balls represent Ti, O and transition metal dopant (M), respectively.

Figure S4 The adsorption configurations for a single Pt adatom on: (a) defect-free site of anatase- TiO_2 , (b) neighboring Ti-Ti site (vacancy) of defective TiO_2 , (c) defect-free site of anatase- $TiMO_2$, (d) neighboring Ti-Ti site of defective $TiMO_2$ and (e) neighboring Ti-M site of defective $TiMO_2$. White, red, teal and blue balls represent Ti, O, transition metal dopant (M) and Pt, respectively.

Figure S5 Calculated total and partial density of states of bulk anatase-TiO₂. Black solid line represents total density of states, red dash and blue dash dot lines represent contributions of Ti_{3d} and O_{2p} electrons, respectively.

Figure S6 Calculated total and partial density of states of bulk anatase- $TiM_{3d}O_2$: (a) $TiScO_2$, (b) $TiVO_2$, (c) $TiCrO_2$, (d) $TiMnO_2$, (e) $TiFeO_2$, (f) $TiCoO_2$, (g) $TiNiO_2$, (h) $TiCuO_2$, and (i) $TiZnO_2$. Black solid line represents total density of states, red dash, green dot and blue dash dot lines represent the contributions of Ti_{3d} , M_{3d} and O_{2p} electrons, respectively.

Figure S7 Calculated total and partial density of states of bulk anatase- $TiM_{4d}O_2$: (a) $TiYO_2$, (b) $TiZrO_2$, (c) $TiNbO_2$, (d) $TiMoO_2$, (e) $TiTcO_2$, (f) $TiRuO_2$, (g) $TiRhO_2$, (h) $TiPdO_2$, (i) $TiAgO_2$, and (j) $TiCdO_2$. Black solid line represents total density of states, red dash, green dot and blue dash dot lines represent contributions of Ti_{3d} , M_{4d} and O_{2p} electrons, respectively.

Figure S8 Calculated total and partial density of states of bulk anatase- $TiM_{5d}O_2$: (a) $TiLaO_2$, (b) $TiHfO_2$, (c) $TiTaO_2$, (d) $TiWO_2$, (e) $TiReO_2$, (f) $TiOsO_2$, (g) $TiIrO_2$, (h) $TiPtO_2$, (i) $TiAuO_2$, and (j) $TiHgO_2$. Black solid line represents total density of states, red dash, green dot and blue dash dot lines represent contributions of Ti_{3d} , M_{5d} and O_{2p} electrons, respectively.

Figure S9. Energy difference of E_{1Pt} and E_{Ovac} , indicates that whether the adsorption of Pt atom is thermodynamically favorable on defect site, i.e. negative value means Pt favors defect site. Y axis: $\Delta E_{1Pt}^{*} = E_{1Pt} + E_{Ovac}$.

TiM _{3d} O ₂	δ_{Ti} / e-	TiM _{4d} O ₂	δ_{Ti} / e^{-}	TiM _{5d} O ₂	δ_{Ti} / e-
TiScO ₂	1.1284	TiYO ₂	1.1231	TiLaO ₂	1.1171
TiO ₂	1.1491	TiZrO ₂	1.1265	TiHfO ₂	1.1159
TiVO ₂	1.1391	TiNbO ₂	1.2616	TiTaO ₂	1.2909
TiCrO ₂	1.1396	TiMoO ₂	1.1359	TiWO ₂	1.3229
TiMnO ₂	1.1377	TiTcO ₂	1.1315	TiReO ₂	1.1430
TiFeO ₂	1.1309	TiRuO ₂	1.1579	TiOsO ₂	1.1666
TiCoO ₂	1.1426	TiRhO ₂	1.1526	TiIrO ₂	1.1384
TiNiO ₂	1.1469	TiPdO ₂	1.1345	TiPtO ₂	1.1342
TiCuO ₂	1.1396	TiAgO ₂	1.1283	TiAuO ₂	1.1368
TiZnO ₂	1.1283	TiCdO ₂	1.1146	TiHgO ₂	1.1369

Table S1 Bader charge analysis for Ti ions of anatase-TiMO₂ obtained by HSE method.

Catalyst	Electrical	Support	Electron transfer	application	Year, ref
system	conductivity	composition			
	(S/cm)				
Pt/TiNbO ₂	0.1	NA	Support to Pt	ORR	20071
Pt/TiNbO ₂	6.1×10 ⁻⁴	$Ti_{0.9}Nb_{0.1}$	NA	ORR	2009 ²
Pt/TiNbO ₂	1.11 (900°C)	$Ti_{0.75}Nb_{0.25}O_2$	NA	ORR	2010 ³
Pt/TiMoO ₂	2.8×10 ⁻⁴	$Ti_{0.7}Mo_{0.3}O_2$	Support to Pt	ORR	20114
Pt/TiMoO ₂	2.8×10 ⁻⁴	$Ti_{0.7}Mo_{0.3}O_2$	Support to Pt	ORR	20165
Pt/TiTaO ₂	0.2	Ti _{0.7} Ta _{0.3}	NA	ORR	20136
Pt/TiTaO ₂	0.2	Ti _{0.7} Ta _{0.3}	Support to Pt	ORR	20147
Pt/TiCrO ₂	Good but no value	Ti _{0.95} Cr _{0.05}	Support to Pt	ORR	20148
	indicated				
Pt/TiTaNbO ₂	8.73×10 ⁻⁴	Ta _{0.08} Nb _{0.2}	Electronic transfer is	ORR	20149
			important		
Pt/TiRuO ₂	NA	$Ti_{0.7}Ru_{0.3}O_2$	Support to Pt	MOR	201110
Pt/TiRuO ₂	Good but no value	$Ti_{0.9}Ru_{0.1}O_2$	NA	MOR, CO	201511
indicated				stripping	
Pt/TiWO ₂	0.02-0.9	$Ti_{0.7}W_{0.3}O_2$	NA	ORR	201012
Pt/TiWO ₂	0.02-0.9	$Ti_{0.7}W_{0.3}O_2$	NA	HOR, CO	201013
				stripping	
Pt/TiWO ₂	Adding carbon to	Ti _{0.7} W _{0.3} O ₂	Support slightly modifies	HOR, CO	201514
	ensure sufficient		Pt electronic structure	stripping	
	conductivity				

Table S2 Pt/TM-doped TiO₂ applied in fuel cell reactions

- 1. K.-W. Park and K.-S. Seol, *Electrochem. Commun.*, 2007, 9, 2256-2260.
- 2. H. Chhina, S. Campbell and O. Kesler, J. Electrochem. Soc., 2009, 156, B1232-B1237.
- 3. S.-Y. Huang, P. Ganesan and B. N. Popov, *Applied Catalysis B: Environmental*, 2010, **96**, 224-231.
- 4. V. T. T. Ho, C.-J. Pan, J. Rick, W.-N. Su and B.-J. Hwang, *J. Am. Chem. Soc.*, 2011, **133**, 11716-11724.
- M.-C. Tsai, T.-T. Nguyen, N. G. Akalework, C.-J. Pan, J. Rick, Y.-F. Liao, W.-N. Su and B.-J. Hwang, *ACS Catalysis*, 2016, 6, 6551-6559.
- 6. A. Kumar and V. Ramani, J. Electrochem. Soc., 2013, 160, F1207-F1215.
- 7. A. Kumar and V. Ramani, ACS Catalysis, 2014, 4, 1516-1525.
- 8. J.-H. Kim, S. Chang and Y.-T. Kim, *Applied Catalysis B: Environmental*, 2014, **158–159**, 112-118.

- 9. Y.-J. Wang, D. P. Wilkinson, V. Neburchilov, C. Song, A. Guest and J. Zhang, *Journal of Materials Chemistry A*, 2014, **2**, 12681-12685.
- 10. V. T. Thanh Ho, K. C. Pillai, H.-L. Chou, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, J.-F. Lee, H.-S. Sheu and W.-T. Chuang, *Energy & Environmental Science*, 2011, **4**, 4194-4200.
- 11. M. D. Obradović, U. Č. Lačnjevac, B. M. Babić, P. Ercius, V. R. Radmilović, N. V. Krstajić and S. L. Gojković, *Applied Catalysis B: Environmental*, 2015, **170–171**, 144-152.
- 12. C. V. Subban, Q. Zhou, A. Hu, T. E. Moylan, F. T. Wagner and F. J. DiSalvo, *J. Am. Chem. Soc.*, 2010, **132**, 17531-17536.
- 13. D. Wang, C. V. Subban, H. Wang, E. Rus, F. J. DiSalvo and H. D. Abruña, *J. Am. Chem. Soc.*, 2010, **132**, 10218-10220.
- 14. D. Gubán, I. Borbáth, Z. Pászti, I. Sajó, E. Drotár, M. Hegedűs and A. Tompos, *Applied Catalysis B: Environmental*, 2015, **174–175**, 455-470.