## **Supplementary Information**

Directing block copolymer self-assembly with permanent magnets:

photopatterning microdomain alignment and generating oriented nanopores

Manesh Gopinadhan<sup>a</sup><sup>†</sup>, Youngwoo Choo<sup>a</sup><sup>†</sup>, Lalit H. Mahajan<sup>b</sup>, Denis Ndaya<sup>b</sup>, Gilad Kaufman<sup>a</sup>,

Yekaterina Rokhlenko<sup>a</sup>, Rajeswari M. Kasi<sup>b,c</sup>, Chinedum O. Osuji<sup>a\*</sup>

## Grain size determination

The orientation distribution coefficient, or orientational order parameter  $P_2$ , Eq. 1, is determined experimentally from Gaussian fits to the azimuthal intensity distribution.

The dependence of the magnetostatic energy  $E_m$  (Eq. 2) on field strength, grain size and  $\Delta \chi$  facilitates measurement of grain size, if  $\Delta \chi$  is known, and if P<sub>2</sub> is measured as a function of field strength. Specifically, the probability of observing a grain at an angle  $\varphi$  relative to the field is governed by a Boltzmann factor involving the magnetostatic energy,  $|\Delta E_m| = |\Delta \varepsilon_m| V_g$ . The integration of this probability (Eq. 3) yields an orientation distribution coefficient that is a function of the field strength. A least-squares fit of the experimentally measured P<sub>2</sub>(B) thereby provides an estimate for the characteristic grain size  $\xi$ , where the grain volume  $V_g = \xi^3$ .

$$P_2 = \left\langle \frac{1}{2} (3\cos^2 \varphi - 1) \right\rangle \tag{1}$$

$$E_m = -\left(\frac{B^2}{2\mu_0}\right) \Delta \chi \xi^3 \cos^2 \varphi \tag{2}$$

$$P_{2} = \frac{\int_{0}^{\pi} \frac{1}{2} (3\cos^{2}\varphi - 1)e^{-E_{m}/k_{B}T} \sin\varphi \, d\varphi}{\int_{0}^{\pi} e^{-E_{m}/k_{B}T} \sin\varphi \, d\varphi}$$

(3)



**Figure S1**: Temperature dependent scattering (a) and the corresponding scattering peak intensity plots of the BCP microstructure and the LC mesophase (b) from the neat block copolymer material. System shows a  $T_{odt}$  (~215 °C) well separated from the LC clearing transition (~80 °C).



**Figure S2**: a) DSC data of the neat and blend materials measured during cooling at 2 °C /min. The neat system displays a transition near 80 °C that is attributed to the formation of a SmA phase directly from an isotropic state. R=0.75 displays 3 distinct transitions: Isotropic-Nematic transition,  $T_{N-I}$ ~83 °C, Nematic-SmA transition  $T_{N-SmA}$ ~72 °C, and crystallization at  $T_x$ ~47 °C. For R=1.5,  $T_{N-SmA}$  is not readily discernible in DSC, while  $T_x$ ~55 °C and  $T_{N-I}$ ~89 °C. b) N-SmA transition for R=1.5 is identified from the temperature dependent scattering from the LC mesophase (blue data points) during cooling. The line shows a linear fit to the data from which the onset of N-SmA transition is identified at ~70 °C.



**Figure S3**. Temperature dependent polarized optical microscopy experiments conducted on (top to bottom) R=1.5, R=0.75 and R=0 (neat) samples Left and right insets shows POM images at 65 °C and in the isotropic state, respectively.



**Figure S4**. Field strength dependence of alignment of  $NBCB_{12}$ -b-NBPLA3 material with crosslinkable LC (RM257) at a stoichiometry of R=1.5; Full width at half maximum (fwhm) of the microdomain scattering vs. B<sup>2</sup>. The sample shows saturation of the alignment (fwhm~20 deg) at a field strength of ~0.5 T. The cooling rate chosen for these experiments was 0.5 °C/min. The line is a visual guide.

| B<br>▲ | 5 °C/min | 2.5°C/min | 1ºC/min | 0.5 °C/min | 0.25°C/min | 0.1ºC/min |  |
|--------|----------|-----------|---------|------------|------------|-----------|--|
|        | 900      | Q 😨 D     | 0 💿 0   | 0 💽 0      | 000        | 0 💿 0     |  |
|        | -        | -         | -       | -          | -          | -         |  |

**Figure S5**: Cooling rate dependence of alignment of the blend material (R=1.5) at 1 T. The system aligns rapidly and the alignment quality is insensitive to cooling rates lower than  $\sim 1^{\circ}$ C/min.



**Figure S6**: Field dependent alignment quality of R=1.2 sample measured by SAXS at 55 °C with a cooling rate of 0.25 °C/min. Left) Full-width at half maximum (fwhm) of the BCP scattering peak as a function of field strength. The red dotted line is a visual guide. Right) Field dependent orientation distribution coefficient, or orientational order parameters, P<sub>2</sub>, determined by Gaussian fits of the azimuthal intensity distribution. The solid line is a fit of the data using the field and grain-size dependent magnetostatic energy as a Boltzmann factor in the integration of the orientation probability that yields P<sub>2</sub>. From the fit the characteristic grain size is 925 nm.



Figure S7: Scheme showing synthesis of the NBCB<sub>12</sub>-b-NBPLA3 LC BCP by sequential ring

opening metathesis polymerization (ROMP) of side chain functionalized (a) NBCB<sub>12</sub><sup>1</sup> and (b) NBPLA3<sup>1</sup> monomers. NBCB<sub>12</sub> volume fraction is  $\sim$ 73%.



**Figure S8**: Chemical structure and <sup>1</sup>H NMR spectrum of  $NBCB_{12}$ -b-NBPLA3 polymer sample in CDCl<sub>3</sub> at room temperature. Detailed NMR investigation of the monomers can be found in the published data<sup>1</sup>.

## REFERENCES

P. Deshmukh, M. Gopinadhan, Y. Choo, S. K. Ahn, P. W. Majewski, S. Y. Yoon, O. Bakajin, M. Elimelech, C. O. Osuji and R. M. Kasi, *ACS Macro Lett.*, 2014, 3, 462-466.