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Supplemental Figures

Figure S1. Tumor distribution of commonly used non-bystander and bystander ADC payloads. 
(a) Structures for two other commonly used payloads. S-methyl-DM4 (top) is a bystander 
payload and monomethyl auristatin F (MMAF, bottom) is a non-bystander payload. 
(b) Simulation parameters for DM4 and MMAF. Lysine-DM4 is the first metabolite released in 
the lysosome and this kin rate is used for payload exit from the lysosome (going from the 
lysosome in to the cytoplasm). Once in the cytoplasm lysine-DM4 is reduced and methylated1 
and the kinetic parameters for S-methyl-DM4 are used thereafter. After ADC degradation, 
MMAF is released in the lysosome and does not undergo further chemical modification upon 
exit from the lysosome. 
(c) Payload distribution following administration of 5 mg/kg DAR4 ADC. The two non-
bystander payloads, DM1 and MMAF, show a similar distribution. At this dose, both bystander 
payloads (MMAE and S-methyl-DM4) reach the edge of the Krogh cylinder radius, albeit it at 
different times. 



Figure S2. Distribution of non-bystander payload (DM1) at constant payload doses with 
different DARs and ADC doses. 
(a) At low ADC/payload doses, the ADC tumor penetration is similar and there is negligible 
improvement in payload distribution. 
(b) At a moderate payload dose, there is slight improvement in payload distribution with the low 
DAR/high ADC dose case. 
(c) At the high payload dose, the low DAR/high ADC dose appreciably improves payload 
distribution. White arrows indicate payload penetration distance above the 150 nM threshold for 
the top row and are shown for comparison. 



Figure S3. Distribution of non-bystander payload (DM1) at a constant ADC dose with 
increasing DAR (increasing payload dose). At all dosing levels, doubling the amount of payload 
by doubling the DAR resulted in only slight improvement of the payload distribution. 
Quadrupling the DAR gave a marginal improvement in the fringe cell layers; however, four 
times the total payload dose was given. Since the ADC dose is typically limited by the total 
payload dose, increasing the DAR is not a viable strategy for high potency non-bystander 
payloads. White arrows indicate payload penetration distance above the 150 nM threshold for the 
top row and are shown for comparison. 



Figure S4. Distribution of bystander payloads at a constant ADC dose with increasing DAR 
(increasing payload dose). Contrary to the non-bystander payloads, increasing the DAR on 
bystander ADCs consistently improves the payload distribution. At low ADC doses (left 
column), increasing the DAR resulted in marginal improvement of distribution; however, the 
therapeutic concentrations (black/red gradient) of the payload did not penetrate as far as a 
corresponding non-bystander payload (Figure S3). This occurs because the payload penetration 
distance is too small to drive payload diffusion farther into the tumor without excessive dilution, 
and the payload washes out in the vessel instead. At a 5 mg/kg ADC dose (middle column) there 
is a dramatic improvement in payload distribution. Doubling the DAR allows the payload to 
penetrate several additional cell layers. Additionally, the entire tumor receives therapeutic 
amounts of payload at 5 mg/kg with a DAR4 ADC. At the 10 mg/kg ADC dosing level (right 
column), although the therapeutic threshold does not reach the edge for the 10 mg/kg DAR1, 
both the DAR2 and DAR4 do. White arrows indicate payload penetration distance above the 150 
nM threshold for the top row and are shown for comparison.



Figure S5. Distribution of bystander payloads at constant payload doses with different DARs 
and ADC doses. 
(a) At low ADC/payload doses (left), the payload distribution does not change significantly. 
At (b) moderate and (c) high payload doses (middle and right, respectively), bystander payload 
distribution improves with increasing ADC dose (bottom). At the high dosing level, the 6 mg/kg 
DAR2 ADC reaches therapeutic concentrations across the tumor; however, the black gradient for 
the 12 mg/kg DAR1 reaches farther into the tumor. White arrows indicate payload penetration 
distance above the 150 nM threshold for the top row and are shown for comparison.



 

Figure S6. Improving direct cell targeting more efficiently improves payload distribution than 
bystander effects. 
(a) Similar to Figure S5, spreading the same total payload dose over more antibodies (middle) 
improves the distribution over a high DAR/low ADC dose (left). However, adding DAR0 
unconjugated antibody to the latter so that both have the same effective DAR and antibody doses 
(right) gives an identical distribution. 
(b) Internalized ADC distribution at three days following administration of DAR1 ADC with and 
without DAR0 unconjugated antibody. Although DAR0 antibody lowers the internalized ADC 
concentration next to vessels, it drives ADC penetration further into the tumor2. 
(c) Distribution of non-bystander (DM1) and bystander payloads (MMAE) with DAR0 
unconjugated antibody added. Co-administration of DAR0 antibody significantly improves the 
penetration distance of the ADC, and hence the payload, though the use of a bystander payload 
can also contribute to further improving the distribution of the payload (right). White arrows 
indicate payload penetration distance above the 150 nM threshold for the left plot (in (a) and (c), 
respectively) and are shown for comparison.



Figure S7. Distribution of payloads with varying Damköhler numbers following administration 
of 2.5 mg/kg DAR4 ADC. At low Damköhler number (0.01, and 0.1), payload diffusion 
dominates and, although the payload reaches the edge tumor edge (blue gradient), the payload is 
not taken up quickly before washing out of the tumor. At moderate Damköhler numbers (0.5, 1, 
5, and 10), the payload is able to diffuse farther into the tumor and is taken up at a higher rate 
resulting in therapeutic concentrations (above 150 nM) through most of the tumor. At high 
Damköhler numbers (25, 50, 100), the diffusion rate is slow relative to uptake and the payload is 
unable to reach the edge of tumor before being taken up by adjacent cells. 



Figure S8. The optimal Damköhler number range remains constant with ADC dose, washout 
rate, and payload dose. 
(a) 3-dimensional plot of six day intracellular payload distribution across the whole Krogh 
cylinder radius with varying Damköhler number at different ADC doses. At the 1 mg/kg DAR4 
(left) the total payload dose is too small to achieve therapeutic concentrations throughout the 
tumor. However, when the dose is doubled (middle), there is a small range of Damköhler 
numbers (1 < Da < 5) where the payload distributes to the tumor edge above 150 nM. At the 
higher ADC dose (right), the range of Damköhler numbers giving therapeutic concentrations is 
much wider (0.1 < Da < 20), but the maximum concentration is still achieved at Da ~3. z-axis is 
cut off at 1000nM.
(b) Intracellular payload concentration at tumor edge (RKrogh = 75µm) with varying Damköhler 
number as a function of ADC dose. As in (a), the optimum Damköhler number is ~3, regardless 
of the ADC dose. 
(c) Intracellular payload concentration at tumor edge (RKrogh = 75µm) with varying Damköhler 
number. At a constant payload dose, the optimal Damköhler number remains constant. The low 
DAR/high ADC dose (10 mg/kg DAR1) improves the payload distribution over high DAR/low 
ADC doses, regardless of the Damköhler number. 
(d) Intracellular payload concentration at tumor edge (RKrogh = 75µm) with varying Damköhler 
number as a function of payload vascular permeability. As the washout rate decreases, payloads 
with lower Damköhler numbers are able to diffuse throughout the tumor without washing out 
and achieve higher concentrations at the tumor edge. However, the optimal Damköhler number 
range appears to be independent of the vascular permeability of the payload. The distribution 
alters only when there is no net flux of the payload out of the tissue (Neumann BC) and the 
payload is permanently trapped inside the tumor. While a negligible washout is unrealistic, the 
Neumann BC (no washout) demonstrates that washout from the tumor is the reason for lower 
effectiveness of low Da payloads. Solid and dotted lines use the left and right axes, respectively. 
Boundary conditions are defined in the Krogh Cylinder Model Equations section. 



Figure S9. Damköhler number is not relevant for molecules with extremely slow cellular 
influx/efflux. 3-dimensional plot of six day intracellular payload distribution with varying 
Damköhler number for (a) bystander and (b) non-bystander payloads (2 mg/kg DAR4 ADC). z-
axis is cut off at 1000nM. Here, the cellular uptake rate was kept constant (i.e. bystander payload 
rate vs. non-bystander payload rate), and diffusion rate employed was calculated based on the 
Damköhler number. For a non-bystander payload (middle), the variation in the Damköhler 
number does not have a significant effect on the distribution of the payload (due to slow efflux), 
compared to a bystander payload (left). However, the maximum intracellular payload 
concentration at tumor edge is still achieved by Da ~1. This highlights that, while the ability of a 
payload to exhibit bystander effects is determined by its membrane permeability, the Damköhler 
number is an important parameter for optimizing bystander effects (e.g. when designing a new 
payload), and a payload with Da between 1 and 3 is predicted to exhibit maximum bystander 
killing. Solid and dotted lines use the left and right axes, respectively.   



Figure S10. Intracellular payload concentration at cells farthest from vessels (RKrogh = 75 µm) 
with varying Damköhler number as a function of (a) payload target concentration and (b) 
reversibility of payload-target immobilization. For relatively low payload-target concentration (1 
μM), the optimal Damköhler number needed to achieve maximum concentration at the edge of 
the tumor is much larger (Da ~50). As the target concentration increases, the optimal Damköhler 
number becomes smaller until it converges to ~1 for high concentrations (e.g. DNA3), beyond 
which it does not decrease for any higher target concentration. Further analysis shows that this 
effect emerges from the reversibility of target binding. Since the rate of payload-target binding is 
much larger that the rate of dissociation, the Damköhler number scaling assumes that payload-
target immobilization is essentially irreversible. At low target concentrations, however, the drug 
is able to dissociate and diffuse deeper into the tissue (or wash out of the tumor), so larger 
Damköhler numbers result in more efficient targeting. When the system is forced to bind 
irreversibly (i.e. koff is set to 0), the optimal Da collapses to ~1. Though less relevant for 
reversible tubulin binding agents like MMAE, this is an important factor to consider when 
designing DNA alkylating cytotoxins (which bind irreversibly to DNA). Solid and dotted lines 
use the left and right axes, respectively. 



Krogh Cylinder Model Equations

1. Free unconjugated antibody (mAb)

∂𝐶𝑚𝑎𝑏

∂𝑡
=  𝐷𝑒𝑓𝑓(1

𝑟
∂

∂𝑟(𝑟
∂𝐶𝑚𝑎𝑏

∂𝑟 )) ‒ 𝑘𝑜𝑛

𝐶𝑚𝑎𝑏

𝜀
𝑇𝑓𝑟𝑒𝑒 + 𝑘𝑜𝑓𝑓𝐵𝑚𝑎𝑏 

2. Free ADC
∂𝐶𝐴𝐷𝐶

∂𝑡
=  𝐷𝑒𝑓𝑓(1

𝑟
∂

∂𝑟(𝑟
∂𝐶𝐴𝐷𝐶

∂𝑟 )) ‒ 𝑘𝑜𝑛

𝐶𝐴𝐷𝐶

𝜀
𝑇𝑓𝑟𝑒𝑒 + 𝑘𝑜𝑓𝑓𝐵𝐴𝐷𝐶

3. Free Target

∂𝑇𝑓𝑟𝑒𝑒

∂𝑡
=  𝑅𝑠 ‒ 𝑘𝑜𝑛

𝐶𝑚𝑎𝑏

𝜀
𝑇𝑓𝑟𝑒𝑒 ‒ 𝑘𝑜𝑛

𝐶𝐴𝐷𝐶

𝜀
𝑇𝑓𝑟𝑒𝑒 + 𝑘𝑜𝑓𝑓𝐵𝑚𝑎𝑏 + 𝑘𝑜𝑓𝑓𝐵𝐴𝐷𝐶 ‒ 𝑘𝑒𝑇𝑓𝑟𝑒𝑒 

4. Bound mAb
∂𝐵𝑚𝑎𝑏

∂𝑡
= 𝑘𝑜𝑛

𝐶𝑚𝑎𝑏

𝜀
𝑇𝑓𝑟𝑒𝑒 ‒ 𝑘𝑜𝑓𝑓𝐵𝑚𝑎𝑏 ‒ 𝑘𝑖𝑛𝑡𝐵𝑚𝑎𝑏 

5. Bound ADC
∂𝐵𝐴𝐷𝐶

∂𝑡
= 𝑘𝑜𝑛

𝐶𝐴𝐷𝐶

𝜀
𝑇𝑓𝑟𝑒𝑒 ‒ 𝑘𝑜𝑓𝑓𝐵𝐴𝐷𝐶 ‒ 𝑘𝑖𝑛𝑡𝐵𝐴𝐷𝐶 

6. Internalized mAb
∂𝐶𝑖𝑛𝑡,𝑚𝑎𝑏

∂𝑡
= 𝑘𝑖𝑛𝑡𝐵𝑚𝑎𝑏 ‒ 𝑘𝑑𝑒𝑔𝐶𝑖𝑛𝑡,𝑚𝑎𝑏 

7. Internalized ADC
∂𝐶𝑖𝑛𝑡,𝐴𝐷𝐶

∂𝑡
= 𝑘𝑖𝑛𝑡𝐵𝐴𝐷𝐶 ‒  𝑘𝑑𝑒𝑔𝐶𝑖𝑛𝑡,𝐴𝐷𝐶 

8. Extracellular payload

∂𝐶𝑒𝑥𝑡,𝑃

∂𝑡
= 𝐷𝑒𝑓𝑓,𝑃(1

𝑟
∂

∂𝑟(𝑟
∂𝐶𝑒𝑥𝑡,𝑃

∂𝑟 )) ‒ 𝑘𝑖𝑛,𝑃

1 ‒ 𝜀𝑃

𝜀𝑃
𝐶𝑒𝑥𝑡,𝑃 + 𝑘𝑜𝑢𝑡,𝑃𝐶𝑖𝑛𝑡,𝑆𝑃

9. Intracellular payload

∂𝐶𝑖𝑛𝑡,𝑃

∂𝑡
=  𝑘𝑖𝑛,𝑃

1 ‒ 𝜀𝑃

𝜀𝑃
𝐶𝑒𝑥𝑡,𝑃 ‒ 𝑘𝑜𝑢𝑡,𝑃𝐶𝑖𝑛𝑡,𝑃 ‒

𝑘𝑜𝑛,𝑃

(1 ‒ 𝜀𝑃)𝑅
(𝑃𝑡𝑎𝑟𝑔𝑒𝑡 ‒  𝐶𝑏𝑜𝑢𝑛𝑑,𝑃) 𝐶𝑖𝑛𝑡,𝑃 + 𝑘𝑜𝑓𝑓,𝑃𝐶𝑏𝑜𝑢𝑛𝑑,𝑃 +   𝑘𝑖𝑛,𝑃𝐶𝑙𝑦𝑠𝑜,𝑃

10. Bound payload

∂𝐶𝑏𝑜𝑢𝑛𝑑,𝑃

∂𝑡
=

𝑘𝑜𝑛,𝑃

(1 ‒ 𝜀𝑃)𝑅
(𝑃𝑡𝑎𝑟𝑔𝑒𝑡 ‒  𝐶𝑏𝑜𝑢𝑛𝑑,𝑃) 𝐶𝑖𝑛𝑡,𝑃 ‒ 𝑘𝑜𝑓𝑓,𝑃𝐶𝑏𝑜𝑢𝑛𝑑,𝑃

11. Lysosomal payload



∂𝐶𝑙𝑦𝑠𝑜,𝑃

∂𝑡
=  𝐷𝐴𝑅 ∗ 𝑘𝑑𝑒𝑔𝐶𝑖𝑛𝑡,𝐴𝐷𝐶 ‒  𝑘𝑖𝑛,𝑃𝐶𝑙𝑦𝑠𝑜,𝑃



Boundary Conditions

1.

‒ 𝐷𝑒𝑓𝑓�𝑑𝐶𝑓𝑟𝑒𝑒

𝑑𝑟 |𝑟 = 𝑅𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
= 𝑃(𝐶𝑝𝑙𝑎𝑠𝑚𝑎, 𝐴𝐷𝐶 ‒

𝐶𝑓𝑟𝑒𝑒

𝜀 )
2.
𝐷𝑒𝑓𝑓�𝑑𝐶𝑓𝑟𝑒𝑒

𝑑𝑟 |𝑟 = 𝑅𝐾𝑟𝑜𝑔ℎ
= 0

3. 
a) Robin Boundary Condition (finite PP > 0)

‒ 𝐷𝑒𝑓𝑓, 𝑃�𝑑𝐶𝑒𝑥𝑡,𝑃

𝑑𝑟 |𝑟 = 𝑅𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
= 𝑃𝑃(𝐶𝑝𝑙𝑎𝑠𝑚𝑎, 𝑃 ‒

𝐶𝑒𝑥𝑡, 𝑃

𝜀𝑃(1 + 𝑅))
b) Dirichlet Boundary Condition (PP → ∞)

�𝐶𝑒𝑥𝑡, 𝑃|𝑟 = 𝑅𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
= 0

c) Neumann Boundary Conditions (PP → 0)

𝐷𝑒𝑓𝑓, 𝑃�𝑑𝐶𝑓𝑟𝑒𝑒, 𝑃

𝑑𝑟 |𝑟 = 𝑅𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
= 0

All simulations in this study were performed by employing the Robin Boundary Condition 
(see Table 1 for vascular permeability of the payload), unless otherwise specified.

4.
𝐶𝑝𝑙𝑎𝑠𝑚𝑎, 𝐴𝐷𝐶 =  [𝐶]0 ∗ (𝐴 ∗ �exp ( ‒ 𝑘𝛼 ∗ 𝑡�) + (1 ‒ 𝐴) ∗ �exp ( ‒ 𝑘𝛽 ∗ 𝑡) �)

5. 𝐶𝑝𝑙𝑎𝑠𝑚𝑎,𝑃 =  0



Supplemental Discussion

Estimation of payload uptake half-life

There is little direct experimental data on the cellular internalization rate of the ADC 
payloads described here. Therefore, we sought to predict payload uptake half-life from 
permeability data obtained from PAMPA assays or estimate it from molecules with similar 
physicochemical properties (Table S1). 

Table S1. Measured, predicted and estimated uptake half-life of various ADC payloads
Uptake half-life (min)

PredictedPayload PAMPA permeability 
x106 (cm/s) Measured Permeability Local-fit

Lys-SMCC-DM1 < 0.14 N/A >10 194
DM4 N/A N/A N/A 5.6

S-methyl DM4 N/A N/A N/A 2.9
MMAE 7.47* 8.215 1.15 2.2
MMAF N/A N/A 1.15 72
Dxd1 12.24 N/A 0.9 -
Dxd2 < 0.14 N/A >10 -
PBD N/A N/A N/A 3.6

SN-38  1.276 N/A 2.8 2.24
SPP-DM1 N/A N/A N/A 7

*Independently measured. 

Permeability measurements from PAMPA assays were mined from literature or measured 
independently. Permeability measurements were performed using the Gentest pre-coated 
PAMPA plates (Corning) following standard protocol. Briefly, 96-well lipid-coated filter plate 
(stored at -20oC) was thawed at room temperature and used as the acceptor plate. A 
corresponding 96-well donor plate was matched with the acceptor plate. Lyophilized MMAE 
(Tocris Biosciences) was solubilized in DMSO to a concentration of 10mM. Working solution 
(200μM) of MMAE in PBS was prepared immediately prior to performing the assay. Payload 
solutions were added to the wells in the donor plate (300μL/well) and pure PBS was added to the 
corresponding pre-coated filter (acceptor) well (200μL/well). The filter plate was coupled with 
the donor plate and the set-up was incubated undisturbed at room temperature for 5 hours, after 
which 150μL solution from each well (donor and acceptor) was transferred to a clean black-
walled, clear-bottom 96 well plate (Corning). The final concentration of payload in each well 
was analyzed using a UV/Vis plate-reader. 

The measured permeability for MMAE is listed in Table S1 and is similar to that reported in 
literature for CaCO2 cell monolayer7. 

 Having previously correlated PAMPA permeability data of numerous small molecules to 
their experimentally quantified cellular uptake rate, we used this cellular kinetics correlation plot 
to estimate the uptake half-life from the PAMPA permeability data using the following curve-fit 
equation



𝑡1/2 =   3.1427𝑃𝑒𝑓𝑓
‒ 0.498

For payloads with no available PAMPA data, we performed a local-fit analysis of data in 
Table S3 to estimate the uptake half-life averaged over several molecules with similar 
physicochemical properties and experimentally quantified uptake rates (Table S2). 

Table S2. Local-fit estimates of uptake half-life of various payloads

Payload Lys-
DM1 DM4 S-methyl 

DM4 MMAE MMAF PBD SN-38 SPP-
DM1

MW (g/mol) 1103 780.37 794.44 718 732 725.802 392.411 752.352

logP7.4 0.2 4.47 4.86 2.01 -0.53 4.12 1.87 4.08

Local Fit+

Average MW (g/mol) 975.25 789 797.64 682.39 731.13 743.64 407.58 735

Average logP7.4 0.07 4.09 4.38 2.82 -0.59 4.28 1.87 3.99

Average uptake half-life 
(min) 193.89 5.65 2.91 2.24 72.49 3.60 2.24 6.98

+ Local fit performed using data in Table S3



Table S3. PAMPA permeability and uptake half-live of various small molecules for local-fit 
estimates

Drug Permeability 
(x106) cm/s

Molecular Weight 
(g/mol)

LogP 
(pH7.4)

Uptake Half 
Life (min)

Nicotine 4.28 162.23 0.43 1.524

Theophylline 3.53 180.164 -1.41 1.677

Antipyrine; Phenazone 7.51 188.2258 0.28 1.151

Caffeine 9.89 194.19 -0.07 1.004

Ibuprofen 10.73 206.29 0.81 0.964

Acyclovir 0.1 225.21 -1.76 9.892

Terbutaline 0.46 225.284 -1.44 4.626

Amiloride 0.08 229.627 -1.25 11.055

Naproxen 6.03 230.259 1.7 1.284

Carbamazepine 9.44 236.269 2.45 1.027

Alprenolol 9.71 249.34 1.34 1.013

Phenytoin Sodium 5.73 252.268 2.47 1.317

Ketoprofen 4.13 254.281 -0.013 1.551

Propranolol Hydrochloride 8.64 259.34 1.2 1.074

Atenolol 0.1 266.336 -1.03 9.892

Desipramine 8.67 266.381 2.92 1.072

Metoprolol 4.29 267.364 0.16 1.522

Imipramine 10.11 280.407 2.2 0.993

Diclofenac 6.95 296.148 1.83 1.197

Hydrochlorothiazide 0.09 297.74 -0.07 10.425

Nadolol 0.16 309.401 0.93 7.828

Ranitidine 0.45 314.4 0.54 4.677

Timolol 4.45 316.421 1.91 1.494

Furosemide 0.46 330.745 -1.54 4.626

Piroxicam 4.96 331.348 0.2 1.416



Acebutolol Hydrochloride 0.21 336.426 0.19 6.837

Famotidine 0.04 337.449 -1.5 15.613

Sulpiride 0.18 341.427 -1.15 7.382

Indomethacin 6.24 357.787 0.77 1.263

Diltiazem 10.61 414.519 1.13 0.969

Hoechst2583 12.4 424 3.6 2.800

olaparib 0.182 434 1.96 7.342

Hoechst3423 24 452.55 4.1 0.500

PARPi-Bodipy FL8 - 640 4 1

PARPi-Bodipy6508 - 895 6 21

Cyclosporine A9 0.3 1203 3.4 5.724

SN-38 6 1.27 392.411 1.87 2.790

Calculation of extracellular payload diffusion coefficient

To estimate the diffusion coefficient of each payload through the tissue interstitium, we 
employed the mathematical model developed by Pruijn et al., which describes the relationship 
between various physicochemical properties of a drug and its steady-state diffusion rate10. 

log 𝐷𝑚𝑐𝑙 = 𝑎 + 𝑏 ∗ 𝑙𝑜𝑔(𝑀𝑊) +  
𝑐

1 + exp (log 𝑃7.4 ‒ 𝑥 + 𝑦 ∗ 𝐻𝐷 + 𝑧 ∗ 𝐻𝐴

𝑤 )
The mathematical expression was derived from experimental measurements of the diffusion 
coefficient made using a 3-D tissue culture model consisting of a well-mixed diffusion chamber 
separated by a multi-cell layer (MCL) coated porous membrane. Model coefficients specific to 
the SiHa cell line were selected to represent a reasonable average of the cellular packing density 
and tight junctions to account for both transcellular and paracellular transport. Listed below are 
the model coefficients (a, b, c, w, x, y, and z) employed in our calculations. Note, the values for 
‘a’ and ‘c’ provided by Pruijn et al. did not match their published plots for Dmcl as a function of 
LogP(7.4) for all cell lines shown. However, slight corrections to these coefficients (namely, +1 to 
value of ‘a’ and inclusion of a negative sign for ‘c’) generated the correct plots that closely 
matched their simulations (Pruijn et al. Figure 510). The original and ‘corrected’ coefficients for 
SiHa are listed in Table S5, and corresponding plot is shown in Figure S11.

Payload specific physicochemical parameters required for estimation of the steady state 
diffusion coefficient, namely molecular weight (MW), lipophilicity (logD at pH 7.4), number of 
hydrogen bond donors (HD) and hydrogen bond acceptors (HA) were calculated from the 
structure of each payload using MarvinSketch (ChemAxon), and are listed in Table S4.



Table S4. Payload physicochemical properties calculated using MarvinSketch

Payload clogD7.4 Molecular weight (Da) HA HD

Lys-SMCC-DM1 1.21 1103.72 13 4

DM4 4.47 780.37 8 3

S-methyl DM4 4.86 794.44 8 2

MMAE 2.01 717.993 7 4

MMAF 1.22 731.976 8 3

Dxd1 0.55 493.491 6 3

Dxd2 -1.49 520.561 5 3

PBD 4.12 725.802 10 1

SN-38 1.87 392.411 5 2

SPP-DM1 4.08 752.352 8 2

The diffusion coefficients calculated from this method represents the steady-state rate 
achieved at equilibrium. However, the diffusion of payload in the tissue interstitium occurs 
transiently and not at steady-state. Therefore, the calculate Dmcl was weighted to the partition 
coefficient, R, to account for the free fraction of each payload in the tissue interstitium. Partition 
coefficient of each molecule was calculated as described previously3, 11.

D𝑒𝑓𝑓, 𝑃 =  
𝐷𝑚𝑐𝑙

(1 + 𝑅)

Table S5. Coefficients for mathematical equation describing the relation between the steady-state 
diffusion coefficient for the SiHa cell line. Original values for ‘a’ and ‘c’ highlighted in red, and 
corrected values highlighted in blue. 

Coefficient a b c w x y z
Original -4.8 -0.62 1.149 0.78 -3.67 -1.109 -0.35

Corrected -3.8 N/A -1.149 N/A N/A N/A N/A



Figure S11. Simulation describing steady-state diffusion coefficient of a drug as a function of its 
physicochemical properties, reproduced using the steady-state equation obtained from Pruijn et 
al. 10 Red data points represent function generated using original coefficients listed in Table S4, 
gray data points represent function generates with only ‘c’ coefficient corrected, and blue data 
points represent function generates using corrected coefficients for both ‘a’ and ‘c’. Plot has been 
scaled identical to the original plot published by Pruijn et al. (Figure 5 in reference 10).

Derivation of Damköhler number for intracellular uptake

For one-dimensional (radial only) modeling,
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