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ESI1 Interface Model and Shape (Trapezoid & Grid) Models 

 i. Interface Model 

 A model of the interface width is necessary to calculate the Debye-Waller factor in the 

intensity calculations. The self-consistent field theory (SCFT) model can be used to extract such 

an interface width by fitting the normalized density profile 𝜙− produced by the calculations to a 

function that characterizes the interface width. One such function commonly used is the error 

function such that 𝜙−(𝑥) = Erf (
𝑥−𝜇𝑥

𝜎√2
), where 𝑥 is the position along the density profile 

perpendicular to the interface that is used for fitting, 𝜇𝑥 is the center of the interface between the 

two blocks, and 𝜎 is interface width 𝑤Int. Using such a model, a fitting procedure can be 

introduced to find 𝜎 given a density profile 𝜙− from the SCFT calculations with a known 𝜇𝑥. 

However, the interface width is spatially variant and thus for an accurate measure of the interface 

width this procedure would have to be performed across different cross-sections of the interface 

in the 2D simulations. Instead, the bulk interface width as a function of 𝜒𝑁 can be calculated to 

produce a reference curve. Such a reference curve was produced and is shown in Figure S1a. To 

avoid dependencies on 𝑁, the interface width is plotted normalized by copolymer period 𝐿0. In 

addition to the SCFT fit curve, the simple model of 𝑤Interface = 2𝑏/√6𝜒 and that of 

𝑤Interface =
2𝑏

√6𝜒
(1 + (

24

𝜋2𝜒𝑁
)

1

3
) are also plotted (green and red, respectively). They are 
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normalized by the SSL value of 𝐿0 = 𝑏𝜒1/6𝑁2/3. The second of these models has been used to 

account for deviations in the interfacial width in the lower 𝜒𝑁 values of the SSL regime
1,2

. 

 As seen in the Figure, the SCFT values follow most closely with the second model, 

underestimating it by a certain fraction which is plotted in Figure S1b. The simple inverse square 

root model gives the lowest interface values. The real copolymer system is expected to have 

larger interface widths than the SCFT model produced because of fluctuation effects not 

explicitly captured. Since the second model gives larger interface values than the SCFT model 

and is an easier way of calculating the interface width used to then calculate 𝐷𝑊, the model was 

chosen to calculate the interface width. Although this interface model is not completely valid at 

the 𝜒𝑁 values of the samples examined in this study, it approximates the interface width to first 

order. The main effect fluctuations have on the interface width is to increase it, so using the 

second model with the slightly higher interface widths than the SCFT model makes the most 

sense. 

 
Figure S1: (a) Plot of different interface width models versus 𝜒𝑁 normalized by 𝐿0. The green curve is a simple 

inverse square root dependency on 𝜒 which greatly underestimates the interface width. The red curve is based on the 

equation inset in red. The black curve is found from fitting error functions to bulk SCFT calculation density profiles, 

where the circles represent data points that were fit. (b) A plot of for the SCFT model vs the red model in a. 

 

 ii. Shape (Trapezoid & Grid) Models 

In addition to the physics based SCFT model, fits to the intensity profiles for the different 

samples were performed using both a trapezoid and a grid based shape model. These models are 

useful because the time to perform a single iteration of the Covariance Matrix Adaptation 

Evolutionary Strategy (CMAES) algorithm is a couple of orders of magnitude faster than using 

the SCFT grid since each SCFT simulation takes on the order of 10 min to 20 min to perform 



 
 

while the Fourier transform calculations of the 𝑆𝐿𝐷 only takes on the order of seconds depending 

on how many trapezoids and grid points make up the structure (i.e. how highly parameterized the 

structure is) as the analytical Fourier transform scales linearly with the number of grid points and 

𝑞 data points used (a single grid point at one 𝑞 data point takes less than a ms to calculate 

depending on processor speed). Details of the trapezoid model are provided in prior work
3–5

. 

The grid based shape model uses the same 𝑁Z by 𝑁X grid resolution as the SCFT 

simulations and thus should be better suited to directly compare with the structures found from 

the SCFT than the trapezoid model. A schematic of how the parameters of the grid model are 

used to produce the 𝑆𝐿𝐷 density is shown in Figure S2. The grid based shape model considers 

the template (both neutral brush and crosslinked polystyrene (X-PS) mat regions) the same as in 

the SCFT model. The major difference in the model is the free region (cyan region in Figure 2 in 

the main text) where the polymer density fields evolve in the SCFT are replaced with variable 

shape columns defined by a minimum of 4 parameters, a top width, mid-width(s), bottom width, 

and mid-width position offset(s). Any number of mid-widths can be used for more complex 

column shapes. These columns represent the PS lamella and the interstitial regions define the 

poly(methyl methacrylate) (PMMA) lamella. The samples examined have a 𝑃Temp/𝐿0 = 3, so 

the assumption is made 1 column has its own independent shape parameters (referred to as the 

guide stripe column) and the other two columns have the same shape parameters by symmetry 

(referred to as the brush columns). The horizontal position of the columns relative to the 

underlying template is normally fixed with the guide stripe column centered over the X-PS mat 

and the two brush columns centered around the center of the of brush region. To test a U-type 

structure over the guide stripe, the brush columns are shifter over the guide stripe instead and the 

guide stripe column centered over the brush region. Between the four template parameters 𝐿GS, 

𝐿Bot, 𝑡GS, and 𝑡Br, the film thickness 𝑡Film, the minimum of 8 column shape parameters, and the 

3 intensity scaling parameters, the grid based shape model has at least 16 parameters to optimize. 

However, since the model creates a grid shape orders of magnitude faster than a single SCFT 

simulation, potential shape solutions can be found in minutes rather than on the order of days for 

a full optimization thus making the use of such a model for calibration and comparative purposes 

very useful. Once regions are defined by the geometric parameters in the model, the assigned 

scattering length density (𝑆𝐿𝐷) values in that region in the grid are round based on whether or 

not the assigned region falls within an acceptable margin of the length scales defined for the 



 
 

feature under question using a prescribed rounding algorithm. Note in the model since no 

fundamental length scale needs to be optimized like 𝐿0 must be in the SCFT simulations, 𝑃Temp, 

the template period, is fixed.  

 
Figure S2: Schematic of how the shape parameters are applied to produce the 𝑆𝐿𝐷 used to calculate the simulated 

intensity profiles in the grid model. (a) shows the outline of the applied equivalent trapezoid shape model and (b) 

shows how the grid model appears after rounding of applied parameters has occurred. There are 𝑁Z grid points in the 

vertical direction and 𝑁X grid points in the horizontal direction. The grey area represents the X-PS guide stripe 

where the assumption is made the guide stripe is a symmetric trapezoidal area defined by a base width of 𝐿Bot, a top 

width of 𝐿GS, and height of 𝑡GS. The magenta area defines the neutral brush region where the area is defined by a 

height parameter 𝑡Br and the area between the guide stripe area in the rest of the unit cell. Two distinct sets of 

column parameters define the three red PS columns in the system. The column over the guide stripe is defined by a 

top width 𝐿CGS,T, a series of mid-width offsets 𝑡CGS,M𝑖 , a series of mid-widths 𝐿CGS,M𝑖, and a bottom width 𝐿CGS,B. 

The column area is defined such that the first set of grid points at the top of the unit cell is defined by 𝐿CGS,T, then a 

slope is calculated from 𝑡CGS,M𝑖  and 𝐿CGS,M𝑖 and used to defined the grid points going down the column for each 𝑖 

mid-width (here 3 total mid-widths are shown), and a final area connecting the column to the guide stripe is defined 

based on the difference in the total column height for 𝑡CGS,M𝑖 and 𝑡GS from 𝑡Film down to 𝐿CGS,B. A similar approach 



 
 

is used for defining column areas is used for the two columns over the brush but with the constraint those two 

columns are identical. The columns are centered over the guide stripe for the guide stripe column and around the 

center for the brush columns, though this constraint can easily be relaxed by adding horizontal offset parameters for 

the columns. Such a horizontal offset is used with a fixed offset of 0.5𝐿0 to model a U-shaped structure that is 

observed for sample 5. Once the grid is defined, the 𝑆𝐿𝐷 values are assigned such that the grey area has a value of 0, 

the red areas have a value of 0, the blue area has a value 𝐶SF, and the magenta area has a value of 0.5𝐶SF.  

Once a 𝑆𝐿𝐷 profile has been developed, the simulated intensity is calculated as follows: 

𝐹(�⃗⃗� ) = ∫(𝑆𝐿𝐷(�⃗� ) ∗ 𝜎(𝑥))𝑒−𝑖(�⃗⃗� ∙�⃗� )𝑑�⃗�             (S1) 

The form factor is defined as a function of the 𝑆𝐿𝐷 and structure factor 𝜎(𝑥) in Eqn S1. 

𝐹(�⃗⃗� ) = ∫(𝑆𝐿𝐷(�⃗� ) ∗ ∑ 𝛿(𝑥 − 𝑛𝑃Temp)𝑛 )𝑒−𝑖(�⃗⃗� ∙�⃗� )𝑑�⃗�            (S2) 

The delta function form of 𝜎(𝑥) is substituted into Eqn S1 to get Eqn S2. 

𝐹(�⃗⃗� ) = ∫(𝑆𝐿𝐷(𝑥, 𝑧) ∗ 𝛿(𝑥))𝑒−𝑖(�⃗⃗� ∙�⃗� )𝑑�⃗�             (S3) 

Taking only the 𝑛 = 0 term since the absolute scaling is not needed, Eqn S3 is obtained. Using 

the delta function identity for convolutions in Eqn S4, Eqn S5 is obtained: 

𝑆𝐿𝐷(𝑥, 𝑧) ∗ 𝛿(𝑥) = 𝑆𝐿𝐷(𝑥, 𝑧)             (S4) 

𝐹(𝑞𝑥, 𝑞𝑧) = ∫ 𝑆𝐿𝐷(𝑥, 𝑧)𝑒−𝑖(𝑞𝑥𝑥+𝑞𝑧𝑧)𝑑𝑥𝑑𝑧            (S5)  

For the grid, the 𝑆𝐿𝐷 is defined piecewise as shown in Eqn S6. 

𝑆𝐿𝐷(𝑥, 𝑧) = {

0 if 𝑥, 𝑧 ∈ PMMA domain
0.5 if 𝑥, 𝑧 ∈ Brush domain

1 if 𝑥, 𝑧 ∈ PS/X-PS domain
                       (S6) 

From this definition, the 𝑆𝐿𝐷 is constant over the different domain regions. Defining each region 

in terms of indices 𝑥𝑖 and 𝑧𝑖 ranging from 1 to 𝑁X and 1 to 𝑁Z, respectively, of equal lengths 𝑙𝑥 

and 𝑙𝑧 such that 𝑙𝑥 = 𝑃Temp/𝑁X and 𝑙𝑧 = 𝑡Film/𝑁Z and defining 𝑆𝐿𝐷(𝑥, 𝑧) = 𝑆𝐿𝐷(𝑥𝑖 , 𝑧𝑖), 

𝐹(𝑞𝑥, 𝑞𝑧) can be written as shown in Eqn S7. 

𝐹(𝑞𝑥, 𝑞𝑧) = ∑ ∑ ∫ ∫ 𝑆𝐿𝐷(𝑥𝑖, 𝑧𝑖)𝑒
−𝑖(𝑞𝑥𝑥+𝑞𝑧𝑧)𝑑𝑥𝑑𝑧

𝑙𝑥𝑥𝑖

𝑙𝑥(𝑥𝑖−1)

𝑙𝑧𝑧𝑖

𝑙𝑧(𝑧𝑖−1)

𝑁Z
𝑧𝑖=1

𝑁X
𝑥𝑖=1         (S7) 

𝑆𝐿𝐷(𝑥𝑖, 𝑧𝑖) is a constant for every 𝑥𝑖 , 𝑧𝑖 grid point pair can now be factored out and the double 

integral split leaving Eqn S8. 

𝐹(𝑞𝑥, 𝑞𝑧) = ∑ ∑ 𝑆𝐿𝐷(𝑥𝑖, 𝑧𝑖) ∫ 𝑒−𝑖𝑞𝑧𝑧𝑑𝑧
𝑙𝑧𝑧𝑖

𝑙𝑧(𝑧𝑖−1) ∫ 𝑒−𝑖𝑞𝑥𝑥𝑑𝑥
𝑙𝑥𝑥𝑖

𝑙𝑥(𝑥𝑖−1)

𝑁Z
𝑧𝑖=1

𝑁X
𝑥𝑖=1         (S8) 

The two integrals are the same except for the 𝑧 or  𝑥 labels. Solving the 𝑧 one yields Eqn S9. 

∫ 𝑒−𝑖𝑞𝑧𝑧𝑑𝑧
𝑙𝑧𝑧𝑖

𝑙𝑧(𝑧𝑖−1)
= 𝑖

𝑒−𝑖𝑞𝑧𝑧

𝑞𝑧
|
𝑙𝑧(𝑧𝑖−1)

𝑙𝑧𝑧𝑖

=
𝑖𝑒−𝑖𝑞𝑧𝑙𝑧𝑧𝑖

𝑞𝑧
(1 − 𝑒𝑖𝑞𝑧𝑙𝑧)          (S9) 

Using the result of Eqn S9 for both the 𝑥 and 𝑧 integrals, Eqn S8 becomes Eqn S10. 



 
 

𝐹(𝑞𝑥, 𝑞𝑧) = −∑ ∑ 𝑆𝐿𝐷(𝑥𝑖, 𝑧𝑖)
𝑒−𝑖𝑞𝑧𝑙𝑧𝑧𝑖𝑒−𝑖𝑞𝑥𝑙𝑥𝑥𝑖

𝑞𝑧𝑞𝑥
(1 − 𝑒𝑖𝑞𝑧𝑙𝑧)(1 − 𝑒𝑖𝑞𝑥𝑙𝑥)

𝑁Z
𝑧𝑖=1

𝑁X
𝑥𝑖=1      (S10) 

Once 𝐹(𝑞𝑥, 𝑞𝑧) is calculated using Eqn S10, the intensity can be calculated taking the absolute 

value squared of 𝐹(𝑞𝑥, 𝑞𝑧), where this is done using the complex conjugate as shown in Eqn 

S11. 

𝐼0(�⃗⃗� ) = |𝐹(𝑞𝑥, 𝑞𝑧)|
2 = 𝐹(𝑞𝑥, 𝑞𝑧)𝐹

∗(𝑞𝑥, 𝑞𝑧)          (S11) 

Eqns S10 and S11 are the same form used in calculating the simulated intensities for the SCFT 

results, the only difference there being how 𝑆𝐿𝐷(𝑥𝑖, 𝑧𝑖) is produced. 

Using the trapezoid and grid models to simulate the 𝑆𝐿𝐷 in different optimization runs, 

optimal fits to the scattered intensity data were produced for sample 1. The resulting SLD 

profiles for the best fits using those models are shown and compared with the best fit using the 

SCFT model for the same sample in Figure S3a. The corresponding intensity peak slice fits are 

shown in Figure S3b and c. Examining the intensity peak fits visually, all three models appear to 

fit the data qualitatively well. To examine their fits more quantitatively, the goodness of fit 

values Ξ were 0.177 for the trapezoid model, 0.183 for the grid model, and 0.206 for the SCFT 

model. Both the trapezoid and the grid models had better goodness of fit than the SCFT model, 

implying there are elements to the average shape profile the SCFT model is missing. Comparing 

𝑆𝐿𝐷 profiles of the grid model and SCFT profile, the biggest differences in the structure occur 

around the guide stripe shape. The guide stripe region from the grid model solution is larger than 

the SCFT solution and the bottom of the guide stripe PS column necks more right above the 

guide stripe. Since the calculations do not distinguish the 𝑆𝐿𝐷 between the PS lamellae regions 

and the guide stripe X-PS, the possibility exists that the more complex shape observed near the 

guide stripe might actually be part of the guide stripe itself rather than the PS lamellae. This 

means a more complex template model might be necessary to capture the exact shape profile in 

the SCFT model. Another minor difference occurs near the top surface where the trapezoid 

model results had a very noticeable wetting layer with the PS domains, the SCFT model had 

somewhat of a noticeable wetting layer, and the grid model being least discernable in this 

feature. PS and PMMA should have nearly identical surface free energies, so these wetting layer 

features could be due to the assumed flat top surface, but if there were any slight preferential 

wetting the PS layer would be the block for that to occur with it having a slightly lower surface 

free energy than PMMA, so the results are at least consistent with the block that would be 



 
 

expected to wet the air surface more. The previous trapezoid study also conducted NEXAFS 

experiments that indicated 70 % to 80 % of the top surface was PS
3
, so this gives more credence 

to the SCFT model also showing such wetting behavior. 

 

 
Figure S3a: Resulting scattering length density profiles for the best fits found to the intensity profile for sample 1 

from the main text. The trapezoid model (top) uses three columns of ten trapezoids to model the PS SLD. The grid 

model (middle) uses a grid of size 𝑁Z by 𝑁X analogous to the SCFT model where three columns of trapezoidal 

features are converted to grid shapes as shown in Figure S2 to model the 𝑆𝐿𝐷. The left image distinguishes the 

template region which is modeled the same in the SCFT and the BCP region which is modeled more like the 

trapezoid model. The SCFT model (bottom) best fit results show both the SCFT density profile on the left and 𝑆𝐿𝐷 

profile on the right. The length scale bar is for both horizontal and vertical directions (i.e., the aspect ratio as shown 

is unity). 



 
 

 
Figure S3b: Best fit scattered intensity profiles for the three models (trapezoid, grid, and SCFT left to right) with 

Bragg peak slices in black and satellite peak slices in blue plotted over the experimental data (red circles) against 𝑞𝑧. 

 



 
 

 
Figure S3c: Best fit scattered intensity profiles for the three models (trapezoid, grid, and SCFT left to right) with 

satellite peak slices in blue plotted over the experimental data (red circles) against 𝑞𝑧. 

 

ESI2 Simulated Target Structure Study 

 In order to ensure the inverse methodology works for the SCFT simulations, a test 

structure was used to create a simulated intensity profile. For this structure, the SCFT parameters 



 
 

that produced the structure were selected based on values that should match well with a 

hypothetical experimental set of conditions based on previous knowledge. The parameters used 

for the test structure are given in Table S1 and the corresponding calculated SCFT density map 

𝜙Tar,PS and 𝑆𝐿𝐷 𝜙Tar,H are shown in Figure S4a. A simulated intensity profile for 𝜙Tar,H was 

calculated and Poisson noise was added to its corresponding intensity profile assuming three 

different values for the minimum intensity 𝐼Min = 1/𝜂 in terms of the noise parameter 𝜂. The 

added noise is then 

𝜁(�⃗⃗� ) = √𝜂𝐼Tar(�⃗⃗� )rand([−1,1]).           (S12) 

Parameter Value Bounds No Noise 𝜂 = 0.1 𝜂 = 0.333 𝜂 = 2 

𝑓 0.44  [0.35:0.52] 0.441 ± 0.004 0.443 ± 0.005 0.445 ± 0.002 0.440 ± 0.001 

𝜒𝑁 25.00 [15.0:35.0] 24.6 ± 0.4 24.7 ± 0.3 24.5 ± 0.1 25.0 ± 0.1 

𝑡Film/𝐿0 1.40 [1.30:1.60] 1.37 ± 0.01 1.37 ± 0.01 1.37 ± 0.01 1.37 ± 0.01 

𝐿GS/𝐿0 1.00 [0.35:1.25] 0.95 ± 0.05 0.93 ± 0.10 0.91 ± 0.12 0.92 ± 0.10 

𝐿Bot/𝐿0 1.90 [0.35:2.90] 1.88 ± 0.02 1.87 ± 0.01 1.89 ± 0.01 1.88 ± 0.01 

𝑡GS/𝐿0 0.267 [0.05:0.50] 0.263 ± 0.007 0.263 ± 0.009 0.269 ± 0.004 0.272 ± 0.002 

𝑡Br/𝐿0 0.167 [0.05:0.40] 0.166 ± 0.002 0.172 ± 0.004 0.168 ± 0.004 0.171 ± 0.006 

𝐷𝑊 2.50 [1.95:3.48] 2.503 ± 0.001 2.501 ± 0.001 2.501 ± 0.001 2.515 ± 0.001 

𝐼Exp -2.00 [-2.5:-1.5] -1.997 ± 0.001 -1.998 ± 0.001 -1.999 ± 0.001 -1.989 ± 0.001 

𝐼Bk 0.50 [0.11:0.90] 0.500 ± 0.001 0.490 ± 0.002 0.505 ± 0.001 0.900 ± 0.001 

Goodness of Fit No Noise 𝜂 = 0.1 𝜂 = 0.333 𝜂 = 2 

 𝛯 0.0193 ± 0.0006 0.0561 ± 0.0001 0.0983 ± 0.0001 0.1670 ± 0.0001 

Table S1: The parameters used in the simulated structure study with their actual input values and bounds during 

fitting on the left and the average fitted values using the CMAES algorithm on the right with their standard 

uncertainty for the four noise level cases. Average goodness of fit values 𝛯 are reported at the bottom for the 

different noise level fits with their standard uncertainty for runs that converged to approximately the lowest 

observed value. 𝛺GS, 𝛺Br, 𝛺Air, and 𝛺SW were all fixed to values of -7.5, -3, -2, and 7.5, respectively for these test 

runs. 

 

Fits using the CMAES algorithm were performed for each noise profile and the structures 

for the best fits found in terms of 𝛯 are shown in Figure S4a for all the noise levels tested in 

terms of PS density and  𝑆𝐿𝐷. To compare the fits, the goodness of fit parameter 𝛯 was used to 

judge how well the inverse methodology worked on a given data set of fixed Poisson noise. Plots 



 
 

of the fit intensities (log scale) versus 𝑞𝑧 against the simulated data are shown in Figure S4b and 

c going from low noise to high noise from left to right in each column with the left column 

having the Bragg peaks slices and first three satellite peak slices and the right column the last 

eight satellite peak slices.  

 
Figure S4a: (Top) The simulated target structure 𝑥 and 𝑧 position dependent PS SCFT density profile 𝜙Tar,PS (left) 

and the corresponding converted scattering length density profile 𝜙Tar,H(right) where blue colors represent PMMA 

regions, red colors PS and X-PS regions, and green colors brush regions. (Bottom) The PS SCFT density profile 𝜙PS 

best fit for the four Poisson noise levels added to the simulated intensities (left to right increasing noise) and the 

corresponding scattering length density for each noise level 𝜙H. The length scale bar is for both horizontal and 

vertical directions (i.e., the aspect ratio as shown is unity). 



 
 

 
Figure S4b: Plots of the best fit log scale intensity peak slices log10(𝐼(𝑞𝑧)) found for the simulated SCFT 𝜙H 

profiles for the noise levels tested (increasing noise from left to right). Black curves are fits for Bragg peak data and 

blue curves are fits for satellite peak data. Red circles are the simulated structure data with Poisson noise added.  



 
 

 
Figure S4c: Plots of the best fit log scale intensity peak slices log10(𝐼(𝑞𝑧)) found for the simulated SCFT 𝜙H 

profiles for the noise levels tested (increasing noise from left to right). Blue curves are fits for satellite peak data. 

Red circles are the simulated structure data with Poisson noise added.  



 
 

 

For these structures, all model parameters except 𝛺GS, 𝛺Br, 𝛺Air, and 𝛺SW were varied 

with bounds given by Table S1. From preliminary runs, the Ω parameters were found to vary 

greatly due to the fact a larger range of surface preferentiality conditions gave similar shape 

profiles, so those parameters were fixed in this study. Three independent runs were performed 

for each level of noise including the no noise case. As expected, the noisiest cases had the worst 

fits in terms of 𝛯 increasing with larger noise as well as having the worst matches in the 

parameters. With one exception at the highest noise case, all parameters were able to be found 

within reasonable uncertainty, demonstrating that the CMAES algorithm is robust enough to 

search the parameter space necessary to fit this kind of scattering data assuming the experimental 

intensity is produced from a singular periodic contributing structure profile. 

ESI3 Satellite Peak Slice Fits 

Figure S5a and b shows the satellite peak slice fits for the 5 different guide stripe width 

samples whose Bragg peak slice fits are shown in Figure 4 of the main text. 



 
 

 
Figure S5a: Intensity profiles for the five samples with increasing guide stripe width from top to bottom where the 

red circles are the experimental data and the blue lines are the satellite peak slice fits. 



 
 

 
Figure S5b: Intensity profiles for the five samples with increasing guide stripe width from top to bottom where the 

red circles are the experimental data and the blue lines are the satellite peak slice fits. 

 

 

 

 

 

 

 

 

 

 



 
 

Table S2 lists all the best fit model parameters for the five samples using model 3 from the main 

text (analogous to Table 1 in the main text). 
 

Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Bounds 

𝑓 0.47 Fixed 

𝜒𝑁 16.5 ± 0.7 13.6 ± 1.1 15.0 ± 0.8 17.6 ± 0.4 17.9 ± 0.4 12.0: 30.0 

𝐿0/𝐿0,SSL 0.76 ± 0.07 0.84 ± 0.03 0.76 ± 0.01 0.73 ± 0.01 0.81 ± 0.05 0.60: 1.10 

𝑡Film/𝐿0 1.26 ± 0.12 1.47 ± 0.06 1.38 ± 0.01 1.33 ± 0.01 1.53 ± 0.04 1.20: 1.60 

𝛺GS −9.9 ± 1.8 −3.2 ± 0.2 −3.3 ± 0.4 −4.7 ± 0.6 −2.00 ± 0.05 −15.0:−2.0 

𝛺Air −1.20 ± 0.12 −0.52 ± 0.05 −0.85 ± 0.05 −2.0 ± 0.3 −1.2 ± 0.3 −8.0:−0.5 

𝛺Br −1.55 ± 0.12 −1.5 ± 0.5 −1.33 ± 0.06 −0.90 ± 0.08 −6.3 ± 1.7 −8.0:−0.5 

ΩSW 6.2 ± 0.2 12.1 ± 1.1 14.44 ± 0.09 5.8 ± 3.4 8.5 ± 0.9 2.0: 15.0 

𝐿GS/𝐿0 0.27 ± 0.19 0.87 ± 0.19 0.73 ± 0.38 0.73 ± 0.38 1.20 ± 0.19 0.20: 1.30 

𝐿Bot/𝐿0 1.00 ± 0.04 1.6 ± 0.4 2.2 ± 0.2 2.2 ± 0.3 1.93 ± 0.04 0.20: 2.50 

𝑡GS/𝐿0 0.40 Fixed 

𝑡Br/𝐿0 0.27 Fixed 

𝑏 [nm] 0.81 ± 0.01 0.74 ± 0.02 0.77 ± 0.01 0.85 ± 0.01 0.89 ± 0.01 0.50: 2.00 

𝐷𝑊 [nm] 2.20 ± 0.03 2.27 ± 0.06 2.21 ± 0.02 2.22 ± 0.03 2.30 ± 0.02 0.03: 9.90 

𝐼Exp −0.87 ± 0.04 −1.00 ± 0.06 −0.85 ± 0.05 −0.87 ± 0.04 −1.11 ± 0.04 −1.57:−0.57 

𝐼Bk 0.62 ± 0.02 0.81 ± 0.05 0.63 ± 0.02 0.89 ± 0.02 0.81 ± 0.04 0.11: 0.90 

 Goodness of Fit  

𝛯 0.206 ± 0.027 0.222 ± 0.027 0.167 ± 0.019 0.209 ± 0.003 0.194 ± 0.005  
Table S2: (Top) Parameter values and their fit uncertainty for the five different samples for the best fits found to the 

set of experimental data using the fully complex template model. (Bottom) The corresponding 𝛯 goodness of fit 

values for the five different samples. Uncertainty values are averaged from the 5 best fits. (Right) Parameter search 

bounds for the given parameter. 

 

ESI4 TICG and SCFT Model Fit Parameter Discussion 

 Figure S6 compares the main parameters for the 5 samples with those found via the TICG 

model
6
. The 𝐿GS parameter generally increased for both models, with sample number as expected 

from the SEM measured values.  It is of interest to consider the effect of allowing the stripe 

bounds to be larger, to explore how well the algorithm could converge to the expected value. 

Doing this allows the technique to be used more as a predictive tool (in cases where there may 

not be additional measurements to constrain parameters). A similar approach was followed for 

the film thickness. Supplemental ellipsometry measurements were used to tightly constrain 𝑡Film 

in the TICG study, while wider bounds were used here with the SCFT model to try to predict the 

film thickness. This resulted in lower and more varied 𝑡Film values for the best fits with the 

SCFT model. 



 
 

The TICG model did not vary 𝐿Bot explicitly but instead varied the angle 𝜃SW between 

the bottom of the trapezoid and the sidewall. Thus, to compare the found parameters, 𝜃SW was 

converted to 𝐿Bot according to Eqn S12 as 

𝐿Bot = 𝐿GS + 2𝑡Film/ tan 𝜃SW.            (S12) 

This equation was similarly used to convert the search bounds of 𝜃 from 20° to 35° to the 

bounds shown in Figure S6. Such a conversion involved looking at the maximum and minimum 

bounds for 𝐿GS and 𝑡Film as well, thus explaining the very large search bounds for 𝐿Bot for the 

TICG model. 

 In the TICG model, the 𝜒𝑁 values found cannot be directly compared with those of the 

SCFT model since the TICG model has a finite non-zero interaction range and considers 

fluctuation effects. Thus, to compare these values, the TICG model parameters can be converted 

to an effective value 𝜒𝑁eff as described in previous work
7
 by estimating the mean-field limit 

value from an intermolecular pair correlation function and semi-grand canonical equation of 

state. The previous work did this estimation for a chain size of 32 beads (the same number used 

in the TICG CDSAXS study
6
) as a function of 𝑛Int, the average number of particles with which a 

given particle interacts. This results in a ratio of  (𝜒𝑁eff)/(𝜒𝑁) = 𝑓(𝑛Int) which is plotted in the 

first figure of the previous work
7
. For 𝑛Int = 14 which is the case in the TICG CDSAXS study, 

this ratio is (𝜒𝑁eff)/(𝜒𝑁) ≅ 0.82. In general, the 𝜒𝑁 values found in the TICG model were 

larger than the SCFT values. This discrepancy is possibly related to the fact that a binary 𝑆𝐿𝐷 

was used from the resulting SCFT densities for the intensity calculations. However, to be most 

comparable with the previous trapezoid shape model studies, a binary 𝑆𝐿𝐷 with 𝐷𝑊 was 

necessary. Thus, the 𝜒 values found are instead more dependent on the interfacial width model 

used in relating 𝜒 and 𝑏 to 𝐷𝑊 than the pure SCFT model used. The TICG model calculations 

instead averaged in reciprocal space many fluctuation density profile contributions, which should 

leave a stronger dependence on 𝜒 in the calculated data than the SCFT model. The last parameter 

compared, the interface width 𝑤Int, was calculated parameter in both models (from the 𝐷𝑊 

parameter in the SCFT model and from 𝜒 using the model given in prior work
1,7

) and thus 

calculated search bounds were very wide in both models, so those are not shown in Figure S6. 

However, both models showed values very close to 5 nm, a value previously reported for the 

bulk PS-b-PMMA systems
8–11

 with the SCFT model slightly larger than the TICG model. The 

results for the interface width in the SCFT model are of course only valid if the model used is 



 
 

correct, but seeing that the values found are approximately in agreement with previous results 

this seems reasonable. The 𝑤Int values for the SCFT model were always larger than those for the 

TICG model; these observation indicates that the way in which the interface model was used in 

the SCFT case, where thermal fluctuations were not considered and therefore do not contribute 

to interfacial fluctuations, has an effect on the interfacial width values that emerge from the 

fitting process.   

 Other parameters examined by both models include the 𝑡Br/𝐿0 which was fixed in the 

TICG to 0.286 and found to be around 0.27 in the SCFT for all samples and the 𝑡GS/𝐿0 was 

found with an average value of 0.33 in the TICG and 0.40 in the SCFT model. The larger value 

for 𝑡GS found in the SCFT model might be due to the SCFT model finding lower 𝑡Film with a 

possible correlation in those parameters. Another possibility is that the guide stripe has no 

contrast with the PS layer due to the same 𝑆𝐿𝐷 values being used and thus more uncertainty 

exists with that parameter in general. The chemical surface affinities for the sidewall, guide 

stripe, brush layer, and air interfaces cannot directly be compared between the two models as 𝜒 

interaction parameters were used to model the surface affinities in the TICG model while the 

SCFT model used fixed chemical potential energies at those interfaces instead.  

  



 
 

 
Figure S6: Comparison plots of the parameters found from different models with range bars showing the parameter 

search bounds where applicable (SCFT in blue and TICG in red) and SEM measurements (yellow) for the 𝐿GS/𝐿0 

parameter. (a) 𝐿GS/𝐿0 for all 5 samples with search bounds for SCFT and TICG and SEM measurements for 

comparison. (b) 𝐿Bot/𝐿0 for all 5 samples with search bounds for SCFT and TICG. (c) 𝑡Film/𝐿0 for all 5 samples 

with search bounds for SCFT and TICG. (d) 𝜒𝑁eff for all 5 samples with search bounds for SCFT and TICG. (e) 

𝑤Int in nm for all 5 samples. No search bounds are given for 𝑤Int since it is a calculated parameter. 

 

 



 
 

 

ESI5 Future Model Enhancements 

Several aspects of the model can still be enhanced, based on its observed inability to 

exactly determine the guide stripe width apart from the BCP shape profile, as well as the grid 

based shape model getting lower 𝛯 values for the goodness of fit for most samples. The guide 

stripe and brush regions were modeled with simple hard mask regions, while more advanced 

models could explicitly model them as X-PS and a random brush layer, respectively. With such a 

model, some way to have the model explicitly distinguish the X-PS region from the PS region 

may be necessary. The air surface interface is most likely not flat as modeled, so including an air 

shape parameter would likely enhance the model as well. Fluctuation effects were not considered 

explicitly as the density profiles used to calculate the 𝑆𝐿𝐷 were the mean field relaxed solutions 

(this is different from local compositional fluctuations due to the finite simulation time and initial 

random noise added to the seeded field guess solution), thus methods probing fluctuation effects 

may find better fits if the fluctuation of the structure is contributing to the scattered intensity 

profile. There could also be potential effects in 3D structure that may affect some of the shape; 

however, additional 𝑞𝑦 data would be necessary to make a full 3D SCFT study viable. 
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