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S.A. Cluster determination

Given the topological separation of solvophobic B blocks in BAB-BCP, we analyze the clustering 
of solvophobic ends. Two solvophobic ends are part of the same cluster if their centers of mass are below 
a coordination threshold of Rcut = 5.0d and if their number of nearest neighbors, i.e. the number of chains 
with B block centers of mass within the coordination threshold, is above a value of 8 for  = 0.025 and 13 
for  = 0.100. In Figures S1a and S1c we show the B block centers of mass radial distribution function, 
gBB,COM(r) for B6 chains for BB = 0.4 and BB = 1.3 at volume fractions of  = 0.100 and  = 0.025, 

Figure S1. Determination of connectivity criteria parameters. (a) and (c) B block centers of mass radial distribution 
function for B6-b-A12-b-B6 chains for volume fractions of  = 0.100 (panel a), and 0.025 (panel c). The dashed line 
denotes a coordination threshold of 5.0d. (b) and (d) Nearest neighbor distributions for a coordination threshold of 
5.0d for  = 0.100 (panel a), and 0.025 (panel c). The dashed line denotes the number of nearest neighbors of 13 
(panel b) and 8 (panel d).
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respectively. Centers of mass radial distribution functions show that a coordination threshold of 5.0d 
captures the coordination hole for BB = 0.4, where the system is fluid, as well as the first shell of 
neighbors (the first peak in gBB,COM(r)) for BB = 1.3, where the micellar cores are formed for both volume 
fractions explored. In Figures S1b and S1d we show neighbor distributions for a coordination threshold of 
5.0d for the same conditions shown in Figures S1a and S1c, respectively. In Figure S1b, the nearest 
neighbor distribution for fluid-like configurations at BB = 0.4 shows non-zero values up to a number of 
neighbors of 13, which is taken as the threshold for minimum number of neighbors for a pair of 
solvophobic ends to be considered to be part of the same cluster for  = 0.100. In Figure S1d, the nearest 
neighbor distributions for fluid-like configurations at BB = 0.4 shows non-zero values up to a number of 
neighbors of 8, which is taken as the threshold for minimum number of neighbors for a pair of 
solvophobic ends to be considered to be part of the same cluster for  = 0.025.

The rationale behind the criteria stems from the necessity to differentiate between chains in fluid-
like environments (with a small number of neighbors) and aggregated or micellar environments. The 
nearest neighbor distributions shown in Figures S1b and S1d show that the threshold number of neighbors 
determined form distributions at BB = 0.4 does is lower than the lowest non-zero value in the nearest 
neighbor distribution at high BB = 1.3.

The parameters used for B6 chains we use for B3 and B9 chains, as the considerations explained 
above hold for the different polymers explored in this work.

S.B. Identification of unimer-to-micelle solvophobicity

As we describe in the main manuscript, we use the distribution of number of solvophobic ends, 

Figure S2. Identification of unimer-to-micelle transition solvophobicity. (a) individual (type I) and connected (type 
II) micellar core density, clus, as function of solvophobicity, BB. (b) average number of solvophobic ends in a 
micellar core, ⟨Nclus⟩, as function of BB. (c-g) distribution of number of solvophobic ends per micellar core, P(Nclus), 
at BB = 0.8 (panel c), 0.85 (panel d), 0.9 (panel e), 1.0 (panel f), and 1.2 (panel g). 
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P(Nclus) as a way to determine the unimer-to-micelle transition solvophobicity. In Figure S2 we present 
results for B6 polymer at  = 0.025. As a function of BB we identify type I and type II clusters, calculate 
the concentration of both types of cluster in Figure S2a, the average number of solvophobic ends in 
micellar cores in Figure S2b, and plot P(Nclus) for different BB in Figure S2c-g. The unimer-to-micelle 
transition conditions are identified as the condition where P(Nclus) shows two distinct peaks: the unimer 
peak at the lowest Nclus values, and the micellar core peak. We note that the onset of distinction of the two 
peaks in P(Nclus) occurs at the peak value of clus

I vs. BB, namely BB = 0.9. This observation is presented 
here for B6 chains, but holds for B3 and B9 chains at the range of conditions we explore in this work.

S.C. Additional PRISM theory calculations at low solvophobicity for BAB-BCPs without NPs

As stated in the main manuscript, in Figure S3 we present the g(r) results for BCP sequences 
and compositions analogous to Figure 2 but at lower solvophobicity BB=0.1 to demonstrate better 
agreement between PRISM and MD as BB decreases. 

Figure S3. Intermolecular correlation function, g(r), from MD simulations (symbols) and from PRISM theory 
(lines) at two volume fractions, =0.100 (top) and =0.025 (bottom), for B3-b-A18-b-B3 (blue squares), B6-b-A12-b-
B6 (violet diamonds), and B9-b-A6-b-B9 (black triangles). Each subsequent g(r) curve is shifted vertically by 0.8 for 
clarity purpose. All results are shown at constant solvophobicity BB=0.1.
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In Figures S4 and S5 we illustrate the effect of simulation box size on agreement between PRISM 
and MD where we directly compare the S(k) from PRISM with results from two sets of MD simulations, 
one with smaller simulation box and one with larger simulation box (quadrupled number of chains). The 
error bar at lowest wave vector decreases dramatically as we go from small system to large system in 
MD, proving that the accuracy of low wave vector results in MD is heavily dependent on the system size.

Figure S4. Static A-A (top) and B-B (bottom) partial structure factors from PRISM theory (lines) are compared with 
the results from MD simulations with small simulation box (filled symbols) and large simulation box (open 
symbols). The results are shown for B3-b-A18-b-B3 (left), B6-b-A12-b-B6 (center), and B9-b-A6-b-B9 (right) at BB = 
0.45 and = 0.100.
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Figure S6 (next page) shows representative snapshots from MD simulations to illustrate that at low 
solvophobicity the structure is disordered.

Figure S5. Same as Figure S4 but at = 0.025
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Figure S6. MD simulations snapshots for B3-b-A18-b-B3 (left), B6-b-A12-b-B6 (center), and B9-b-A6-b-B9 (right) at 
two volume fractions, =0.100 (top two rows) and =0.025 (bottom two rows). The results are shown for large and 
small simulation boxes at  = 0.45.



8

S.D. Additional MD results for BAB-BCPs without NPs

In this section, we include: a zoomed-in version of Figure 5a to highlight the high BB behavior of 
clus

II in Figure S7, the end-to-end distance for B3, B6, and B9 polymers at  = 0.025 in Figure S8, and 
high-resolution simulation renderings of B9 polymer at high BB in Figure S9.

Figure S7. Type II cluster density for B3-b-A18-b-B3 chains at  = 0.100 (zoomed in data from Figure 5a).

Figure S8. End-to-end distance distribution for chain conformations for B3-b-A18-b-B3 (a), B6-b-A12-b-B6 (b), B9-b-
A6-b-B9 (c) from MD simulations at =0.025.
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Figure S9. MD simulation snapshots for B9-b-A6-b-B9 at high solvophobicity (=0.94) at =0.100 (left) and 
=0.025 (right). Snapshots are shown from MD with small simulation box (top) and large simulation box (bottom).
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S.E. Additional PRISM theory and MD simulation comparisons for BAB-BCPs without NPs

In this section, we present in Figure S10 micellization behavior for A6 and A3 polymer to 
compare results of ABA and BAB BCPs shown in main paper, and in Figure S11 S(k) for B3 chains 
calculated from PRISM theory analogous to results shown in Figures 6 and 7 in the main manuscript.

For A3 and A6 polymers there is no distinction between type I and type II clusters as there is no 

Figure S10. Micellization behavior for A3-b-B18-b-A3 chains (panels a and b) and A6-b-B12-b-A6 chains (panels c 
and d) at varying solvophobicity. Data are shown for two volume fractions, η= 0.100 (panels a and c) and η= 0.025 
(panels b and d). Cluster density is shown in the top parts of each panel. Average number of chains in a micellar 
core is shown in the bottom parts of each panel. 
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way for the type I micellar cores to be connected to form type II clusters; there is no possibility of bridges 
to form between micellar cores.

Figure S11. Static A-A (left) and B-B (center) partial structure factors for B3-b-A18-b-B3 chains at =0.100 (a, b) 
and =0.025 (d, e) from PRISM theory at range of low BB. The snapshots from MD simulations at high BB are also 
shown (c, f).
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S.F. Additional PRISM theory calculations at low solvophobicity for BAB-BCPs with NPs

In this section, we present results that were not included in the main text for direct comparison of 
PRISM theory and MD simulations in real and reciprocal spaces. In Figure S12 we present direct 
comparison of intermolecular correlation function for B6 as in Figure 8 but at low NP affinity. Analogous 
results for B3 and B9 systems at various affinities are presented in Figures S13-S17. In Figures S18-S23 
we present results for direct comparison of S(k) from PRISM and MD for B3, B6, B9 systems at various 
NP affinities and two volume fractions (=0.1, 0.025).

Figure S12. Intermolecular correlation function, g(r), for B6-b-A12-b-B6 chains with symmetric low nanoparticle 
affinity AC=BC=0.25. Results are shown from MD simulations (symbols) and from PRISM theory (lines) at two 
volume fractions, =0.100 and =0.025, and two nanoparticle contents, C=0.10 and C =0.25, Each subsequent g(r) 
curve is shifted vertically by 0.8 for clarity purpose. All results are shown at constant BB=0.45.
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Figure S13. Same as Figure S12 but for B3-b-A18-b-B3 chains with symmetric low nanoparticle affinity 
AC=BC=0.25.  

Figure S14. Same as Figure S12 but for B3-b-A18-b-B3 chains with symmetric intermediate nanoparticle affinity 
AC=BC=0.5.
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Figure S15. Same as Figure S12 but for B3-b-A18-b-B3 chains with symmetric high nanoparticle affinity 
AC=BC=1.0. Comparison for =0.025 and C =0.25 is not shown because at these parameters PRISM does not 
converge to a numerical solution.
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Figure S16. Same as Figure S12 but for B9-b-A6-b-B9 chains with symmetric low nanoparticle affinity 
AC=BC=0.25.

Figure S17. Same as Figure S12 but for B9-b-A6-b-B9 chains with symmetric intermediate nanoparticle affinity 
AC=BC=0.5.
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Figure S18. Static A-A (top), B-B (center), and C-C (bottom) partial structure factors from PRISM (lines) and MD 
(symbols) for B6-b-A12-b-B6 chains at  = 0.100 and BB = 0.45. Results are shown for two nanoparticle volume 
fractions, C = 0.10 (dashed lines, squares) and C = 0.25 (solid lines, triangles). In the left and right panels two 
symmetric nanoparticle affinities are shown, AC = BC = 0.25; 0.50 correspondingly.
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Figure S19. Same as Figure S18 but at  = 0.100.
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Figure S20. Static A-A (top), B-B (center), and C-C (bottom) partial structure factors from PRISM (lines) and MD 
(symbols) for B3-b-A18-b-B3 chains at  = 0.100 and BB = 0.45. Results are shown for two nanoparticle volume 
fractions, C = 0.10 (dashed lines, squares) and C = 0.25 (dotted lines, triangles). Results for various symmetric and 
asymmetric affinities are shown, where AC and BC are 0.25 or 0.50.
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Figure S21. Same as Figure 20 but for B3-b-A18-b-B3 chains at  = 0.025.
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Figure S22. Same as Figure 20 but for B9-b-A6-b-B9 chains at  = 0.100.
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Figure S23. Same as Figure 20 but for B9-b-A6-b-B9 chains at  = 0.025.
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S.G. Additional MD results for BAB-BCPs with NPs

In this section, we present in Figures S24-S26 the micellization behavior of B3 and B6 polymer at 
 = 0.10 and C = 0.1, analogous to results shown in Figure 9. We also show in Figure S27 simulation 
renderings for B9 polymer at  = 0.025, C = 0.1 for the whole range of AC and BC.

Figure S24. Micellization behavior for B6-b-A12-b-B6 chains and nanoparticles as  = 0.100, nanoparticle loading of 
C = 0.10, and nanoparticle affinity to the solvophobic block BC = 0.5 as a function of solvophobicity, BB. Panel a 
shows results for AC = 0.25. Panel b shows results for AC = 0.50. Panel c shows results for AC = 1.00. Plots from 
top to bottom show: cluster concentration, clus, for type I (individual micellar cores, open triangles) and type II 
(connected micellar cores, filled circles) clusters; average number of solvophobic ends in a micellar core, ⟨Nclus⟩; 
nanoparticle uptake, ftot; average number of nanoparticles in A-rich region (red circles), B-rich region (green 
triangles), and A-B interface (black squares); fraction of loops (magenta circles), bridges (cyan triangles), and free 
ends (grey squares).
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Figure S25. Micellization behavior for B3-b-A18-b-B3 chains and nanoparticles as  = 0.100, nanoparticle loading of 
C = 0.10, and nanoparticle affinity to the solvophilic block AC = 0.5 as a function of solvophobicity, BB. Panel a 
shows results for BC = 0.25. Panel b shows results for BC = 0.50. Panel c shows results for BC = 1.00. Plots from 
top to bottom follow Figure S24.
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Figure S26. Same as Figure S24 for B3-b-A18-b-B3 chains.
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Figure S27. Snapshots for B9-b-A6-b-B9 chains at BB = 1.0, = 0.025, and C = 0.1 with NPs at different affinities, 
AC, BC.
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S.H. Additional PRISM theory and MD simulation comparisons for BAB-BCPs with NPs

In this section, we present: results analogous to those from Figure 11 but at intermediate NP 
affinity (Figure S28), and results analogous to those from Figure 12 but at low NP affinity (Figure S29).

Figure S28. Static A-A (a) and B-B (b) partial structure factors for B6-b-A12-b-B6 at =0.100 from PRISM theory at 
a range of low BB with nanoparticle concentration of C=0.1. Results are analogous to Figure 11 but for 
intermediate symmetric nanoparticle affinity, AC = BC = 0.5. (c) Type I and type II cluster density, clus, as function 
of BB. Corresponding snapshots from MD simulations at high BB are also shown: full simulation box snapshot 
without NPs shown for clarity (left), and detail on a micellar core (right).
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S.I. Illustration of how to map our generic implicit solvent bead-spring polymer model to specific 
polymer and solvents chemistries

Here we show how one could map our generic implicit solvent model for symmetric BAPB-BCP, 
B6-b-A12-b-B6, to a specific amphiphilic block copolymer solution. We choose one specific system of PS-
b-PEO-b-PS (poly(styrene)-block-poly(ethylene oxide)-block-poly(styrene)) in THF-water mixture. PEO 
is relatively more hydrophilic than PS, and while THF and water are good solvents for PEO, only THF is 
a good solvent for PS (due to its hydrophobicity). In this scenario having the BCP initially in THF and 
gradually adding water would be equivalent to making the solvent gradually poor for PS, i.e. increasing 
solvophobicity of PS block.

First, we equate the size of a single polymer B bead to the Kuhn segment length of PS ( = 
1.8nm), which corresponds to 9.5 PS repeat units1. 12 B block beads thus correspond to 12 x 9.5 = 114 PS 
repeat units. Since the size of the A polymer bead and B polymer bead is the same, we then calculate the 
number of PEO repeat units that fit in a 1.8nm size bead. To calculate this, we assume ideal chain scaling 
(N ~ R0.5) and use the relationship 6.7 x (1.8 / 1.1)2 = 17.9 repeat units, where 1.1nm is the Kuhn segment 
length of PEO, and 6.7 is the number of PEO repeat units in the Kuhn segment. Therefore, 12 A beads 
corresponds to 17.9 x 12 = 216 PEO repeat units. Thus, roughly a B6-b-A12-b-B6 chain corresponds to 
PS57-b-PEO216-b-PS57. 

Figure S29. Static A-A (a) and B-B (b) partial structure factors for B9-b-A6-b-B9 chains at = 0.025 from PRISM 
theory at range of low BB with nanoparticle concentration of C=0.1. Results are analogous to Figure 12 but for low 
symmetric nanoparticle affinity, AC = BC = 0.5 (c) Type I and type II cluster density, clus, as function of BB. 
Corresponding snapshots from MD simulations at high BB are also shown: full simulation box snapshot with NPs 
(left) and without NPs (right).
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Next, we map the solvophobicity (Lennard Jones potential strength), BB, to solvent composition 
in the mixture of THF and water. To tie BB to solvents we use the Hildebrand solubility theory, 
specifically we use the Hildebrand-Scott equation2 that relates Hildebrand solubility parameters to the 
solvophobic block (PS)-solvent Flory interaction parameter, PS-S, as

 , \* MERGEFORMAT S3PSS 
vm,PSvm,S 0.5 PS S 2

RT

where vm,X is the molar volume of species X, with X being either the polymer (PS) or the solvent (S), X is 
the Hildebrand solubility parameter for species X, R is the ideal gas constant, and T is the absolute 
temperature. For a water(W)-THF(T) solvent mixture the interaction parameter for PS-solvent mixture 
becomes

 ,\* MERGEFORMAT S4PSS 
vm,PS yvm,W

1  1 y vm,T
1 

1 0.5

PS  yW  1 y T
  2

RT

where y is the volume fraction of water in the solvent mixture. The molar volume and solubility 
parameters for water and THF are explicitly stated. We then equate the interaction parameter with the 
formal definition by Flory for a solvophobic polymer, B, and solvent, BS, as

 , \* MERGEFORMAT S5BS  z BS  0.5 BB SS  

with ij being the Lennard Jones interaction strength used in the present work, and z being the 
coordination number. Since we treat our solvent mixture implicitly, the only non-zero interaction 
parameter in equation S5 is BB. Setting BS and PS-S equal results in

 .\* MERGEFORMAT S6BB 
2
z

vm,PS yvm,W
1  1 y vm,T

1 
1 0.5

PS  yW  1 y T
  2

RT

The following figure shows the value of BB that corresponds to a solvent mixture composition y.
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The different lines shown correspond to possible values of the coordination number, z; in 
principle, one can obtain z from the first peak in the B-B radial distribution function. For illustration of 
the effect of z on the above mapping we show the data for z=10 to 16. This shows that PS57-b-PEO216-b-
PS57 solution with the solvent composition ranging from pure THF to increasing volume fraction of water 
in THF-water mixture corresponds to our model copolymer going through a staged increase in 
solvophobicity in the simulations.

Disclaimer: This passage above is also present in the supplementary information for another paper 
entitled “Molecular dynamics simulations and PRISM theory study of solutions of nanoparticles and 
triblock copolymers with solvophobic end blocks” which at the time of writing this note was under review 
at the Journal of Chemical and Engineering Data. We are not able to refer to that paper here as we do 
not have a citation at the moment. 

S.J. Protocol for parameter space screening with PRISM theory

As an example, we present a protocol that one could use to address the question: “For a given block 
copolymer, what nanoparticle design and nanoparticle concentration leads to microphase separated states 
or avoids macrophase separation at high solvophobicity?”

Step 1) define the parameter space to explore (for example, increasing values of NP affinity to A and B 
block and increasing values of NP concentration in the solution)

Step 2) for each value in the parameter space, do the following:
a. perform PRISM calculations and calculate S(k) with increasing solvophobicity (BB) 
b. identify tendency either to micro- or macro-phase separate according to the following criteria:

Figure S30. Mapping model solvophobicity BB for a PS57-b-PEO216-b-PS57 block copolymer in a water-THF 
mixture as function of the water volume fraction, y. Different possible values of the coordination number, z, are 
shown for comparison. 
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- if microphase (k* ≠ 0) peak grows with BB more strongly than the macrophase (k→0) peak, 
then conclude that the system has a tendency to microphase separate at high BB

- if microphase peak is absent or the macrophase peak grows more strongly with BB than the 
microphase peak does, then conclude that the system has a tendency to macrophase separate at high 
BB 

Step 3) based on step 2 results, mark the “critical” values in parameter space that would answer the 
design question “For a given block copolymer, what nanoparticle design and nanoparticle concentration 
leads to microphase separated states or avoids macrophase separation at high solvophobicity?”. These 
“critical” values in the parameter space are just predictions based on PRISM theory. 

Step 4) run MD simulations near and at the “critical” values of parameter space 

a) test/validate PRISM predictions

b) obtain more detailed structural information than PRISM theory provides

We note that the above protocol would work only at conditions where micro- and macro-phase peaks are 
distinguishable and present in the structure factors, for example, at higher total volume fractions ( = 
0.100).
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