Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2017

	G/ C ₆₀ F ₄₈ (Ω)	(G/ C ₆₀ F ₄₈) ₂ (Ω)
/Start	127	42
50°C, N ₂ , 15 min	123	41
100°C, N ₂ , 15 min	127	37
150°C, N ₂ , 15 min	112	38
200°C, N ₂ , 15 min	156	48
22°C, 60%RH air, 3 h	148	47
22°C, 60%RH air, 20 h	136	49
150°C, 60%RH air,ª 15 min	133	46
150°C, 95%RH air,ª 15 min	133	48
End	133	48

Footnote

^a RH = relative humidity of ambient air (22°C) flowed into chamber. Sample on heated plate.

Supplementary Table 1. Resistance in Ohms of G/ $C_{60}F_{48}$ and $(G/C_{60}F_{48})_2$ assemblies on 300-nm thick SiO₂/ Si wafers, taken sequentially through different treatments. All resistance measurements were performed in N₂ at 22°C. The robustness of these samples to brief heating in both N₂ and even wet ambient air is evident.

	Theory		Experiment	
	6-311g(d)	6-31g+(<i>d</i>)		
Ionization potent	ial			
C ₆₀	7.65	7.64	7.61 ±0.06	
C ₆₀ F ₁₈	9.0	9.06		
C ₆₀ F ₃₆	11.3	11.46		
C ₆₀ F ₄₈	12.0	12.2	12.3 ±0.1{Steger, 1997 #72}	
F ₄ -TCNQ	9.24	9.32		
1 st electron affinity				
C ₆₀	2.64	2.64	2.67 ±0.02	
C ₆₀ F ₁₈	3.02	3.09		
C ₆₀ F ₃₆	3.23	3.42		
C ₆₀ F ₄₈	3.74	4.00	4.06 ±0.3 (adiabatic){Jin, 1994 #5; Hettich, 1994 #65}	
F ₄ -TCNQ	4.47	4.56		
2 nd electron affin	ity	1		
C ₆₀	<0	<0	<0	
C ₆₀ F ₁₈	<0	0.08		
C ₆₀ F ₃₆	0.61	0.86		
C ₆₀ F ₄₈	1.82	2.13		
F ₄ -TCNQ	0.12	0.33		

Supplementary Table 2. Computed values are for vertical transitions. 6-311g(*d*) is sufficient to predict E_A accurately for C₆₀. Diffuse functions not required. The adiabatic E_A can be evaluated as the mean of the vertical E_A s computed at the ground-state geometry of the initial state and of the final state. For C₆₀, the adiabatic E_A is 0.09 eV larger than the vertical E_A for the initial ground-state geometry. For C₆₀F₄₈, this is ca. 0.2 eV; for C₆₀F₄₈⁻, 0.3 eV; for C₆₀F₃₆, 0.08 eV; for C₆₀F₁₈, 0.14 eV; for F₄-TCNQ, 0.17 eV. The results converge to yield the I_P of C₆₀F₄₈ at 12.1 eV (expt, 12.3±0.1 eV){Steger, 1997 #72}, first adiabatic E_A at 4.0–4.3 eV (expt, 4.06±0.3 eV).{Jin, 1994 #5}