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I.  Causality constraint on sound absorbing structures 

Consider a layer of composite material backed by a rigid reflective wall (Fig. S1a). In response to an 

incident sound wave, the reflected sound pressure   pr (t)  is the superposition of the direct reflection of 

the incoming sound pressure at that instant,  pi(t)  plus those in response to the incoming sound wave at 

earlier time, ( )ip t t- , with  τ > 0 .  Hence 

  
pr (t) = K

0

∞

∫ (τ ) pi(t −τ )dτ ,         (S1) 

where   K(τ ) is the response kernel in the time domain.  By carrying out Fourier transform

  
pi/r (ω ) = pi/r−∞

∞

∫ (t)eiωtdt , the reflection coefficient for each frequency may be expressed as 

  
R(ω ) ≡

pr (ω )
pi(ω )

= K
0

∞

∫ (τ )eiωτ dτ .        (S2) 

From Eq. (S2),   R(ω )  is an analytic function of complex ω  in the upper half of the complex ω plane. In 

terms of the wavelength   λ = 2πv0 /ω , where   v0  is the speed of sounds in air, that means ( )R l has no 

singularities in the lower half-plane of complex l , but may have zeros that represent total absorptions 

of incoming energy.  Here the imaginary part of λ  reflects dissipation. 

To determine the constraint on the reflection coefficient   R(λ)  by the causality principle, we 

introduce an ancillary function    
!R(λ) after Fano and Rozanov1, 2,  

   
!R(λ) ≡ R(λ)

λ − λn
∗

λ − λnn
∏ ,         (S3) 

where λn , satisfying  R(λn ) = 0 , are the zeros located in the lower half-plane of complexl , and ∗  stands 

for complex conjugation. Since  !R  has neither zeros nor poles at  Im(λ) < 0 ,    ln !R  is an analytic function 

in the lower half-plane of complex l  and the Cauchy theorem is valid, i.e., the integral over a closed 

contour  C  in the lower half-plane of complex λ  should yield zero, where the contour consists of the 

real axis of and the semicircle  C∞ , which belongs to the lower half-plane and has infinite radius as 

shown in Fig. S1b. Hence  
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ln

C∫ !Rdλ = ln
−∞

+∞

∫ !Rdλ + ln
C∞
∫ !Rdλ = 0 .       (S4) 

Note that    |
!R |=| R | at real wavelengths and   ln | R |  is an even function of λ  according to its definition 

Eq. (S2).  Taking the real part of Eq. (S4) yields  

   
Re ln

C∫ !Rdλ = 2 ln
0

∞

∫ | R | dλ + Re ln
C∞
∫ Rdλ +

  
Re ln

C∞
∫

n
∑ λ − λn

∗

λ − λn

dλ = 0 .   (S5) 

 
To calculate the second integral on the right-hand-side of Eq. (S5), we consider the infinite-

wavelength limit of R , i.e., the static limit.  The reflection from a composite material layer can be 

characterized by an effective bulk modulus   Beff  relating to its surface responses3.  The surface 

displacement u under a pressure  p  is therefore given by the relation

 (pressure) = (effective bulk modulus)× (strain) , or   u = pd / Beff  with  d  being the sample thickness.  The 

resulting surface impedance is given by   Z = ip / (ωu) = iZ0Beffλ / (2πB0d)  with   Z0 = B0 / v0  being the air 

impedance and   B0  the bulk modulus of air.  Therefore, the reflection coefficient   R = (Z − Z0 ) / (Z + Z0 )  

is given by 

  
R =

1+ i2πdB0 / (λBeff )
1− i2πdB0 / (λBeff )

.         (S6) 

Since
  
lim
|λ|→∞

ln R = i4πdB0 / (λBeff ) , the contour integral is therefore given by 

  
ln

C∞
∫ Rdλ = lim

|λ|→0
i

0

−π

∫ λ ln Rdθ = 4π 2dB0 / Beff  ,      (S7) 

where θ  is the argument of complexλ .  It should be noted that by taking the limit of | |l ®¥ in the 

above contour integral, one is essentially counting all the poles of   ln R  in the lower half of the complex 

λ plane, with the imaginary part of each pole being relevant to the absorption of each resonance of the 

system. This is evident from the fact that in our previous work3, it has been shown that the static limit 

the effective bulk modulus
  
Beff (λ →∞) = ρ0d

2 α n / Ωnn∑( )−1
 with  Ωn  being the nth resonance 

 
Fig. S1 (a) Schematic for the geometry of composite absorbing layer.  (b) The contour for the integral in Eq. 
(S4). 
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frequency of the system and  α n  the relevant oscillator strength defined in the main text. Hence taking 

the limit of | |l ®¥ implies all the absorptions related to the resonances of the system are taken into 

account. In fact, for the designed structures shown in this work, if we let d d= as defined in Eq. (S19) 

below, then the above formula for eff ( )B l ®¥ is accurately equal to 0 /B j  with porosity air tot/V Vj º  

being the volume fraction of the air phase. This is in agreement with Wood’s formula for the composite 

effective bulk modulus in the static limit, given by   Beff
−1 =ϕB0

−1 + (1−ϕ )Bsolid
−1 . Since   Bsolid >> B0 , 

  Beff = B0 /ϕ follows. In addition, for samples with identical FP channels either straight or folded,j f= =

  Sair / Stot  where   Sair is the area of FP channels’ total surface cross sectional area and   Stot  being the total 

area of the sample surface exposed to incident sound. Hence in this work we have  Beff = B0 /φ .     

For the third integral on the right-hand-side of Eq. (S5), since

  
lim
|λ|→∞

ln[(λ − λn
∗) / (λ − λn )]= i2Im(λn ) / λ , we have 

  
ln

C∞
∫

λ − λn
∗

λ − λn

dλ = lim
|λ|→∞

i
0

−π

∫ λ ln
λ − λn

∗

λ − λn

dθ = 2π Im(λn ) .     (S8) 

Substitution of Eqs. (S7) and (S8) into Eq. (S5) yields  

  
− ln

0

∞

∫ | R(λ) | dλ = 2π 2d(B0 / Beff )+π Im
n
∑ (λn ) .      (S9) 

As 2[1 ( )] | ( ) |A Rl l- = , where ( )A l stands for the absorption coefficient, and all  λn  are in the lower 

half-plane, i.e.,  Im(λn ) < 0 , we therefore have the inequality 

  
dmin =

1
4π 2

Beff

B0

ln
0

∞

∫ [1− A(λ)]dλ ≤ d .       (S10) 

 It follows from Eq. (S9) that the equality in (S10) is attained when   R(λ)  has no zeros in the 

lower half-plane of complex λ .  Such   R(λ)  corresponds to the minimum phase-shift frequency 

dependence1, 2 for which the variation of the phase of the reflection coefficient with λ  does not exceed

 2π , in the domain0 l< < ¥ . 

 

II. Inclusion of higher order FP resonances in the design strategy 

In this section we give the derivation of the design algorithm that includes all the higher order FP 

resonances.  For a FP channel with length  ℓ n , its surface impedance is defined at its mouth,   z = 0 , by 

  Z = p(0) / v(0) , with 
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p(z) = cos ω (z + ℓ n ) (1+ iβ /ω )ρ0 / B0

⎡
⎣

⎤
⎦ , 

   
v(z) = −isin ω (z + ℓ n ) (1+ iβ /ω )ρ0 / B0

⎡
⎣

⎤
⎦ / Z0 . 

For an array of  N  FP channels with various lengths facing the incident sound wave in parallel, their 

total impedance is given by 

 
   
Z = iZ0 φ tan ωℓ n (1+ iβ /ω )ρ0 / B0

⎡
⎣

⎤
⎦

n=1

N

∑⎧
⎨
⎩

⎫
⎬
⎭

−1

  
= i

Z0d
ωv0

α n

(2m−1)2Ωn
2 −ω 2 − iβωm=1

∞

∑
n=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

−1

, (S11) 

where φ  is the structure’s surface porosity (fraction of the total surface area occupied by the open 

mouths of the FP channels),    Ωn = πv0 / (2ℓ n )  is the 1st-order FP resonance of the nth FP resonator, the 

terms with   m >1  stand for higher order FP resonances, and oscillator strength

   α n = 2dφ / (ℓ nN ) = 4dφΩn / (πv0N ) .  It is easy to see that Eq. (S11) is equivalent to Eq. (2) in the main 

text if we take only the terms with  m = 1. 

 In the ideal case,   ℓ n  is continuously distributed, i.e.,  Ωn  is a continuous variable, Eq. (S11) can 

be converted into an integral: 

 
   
Z ! i lim

β→0

Z0d
ωv0

α (Ω)D(Ω)
(2m−1)2Ω2 −ω 2 − iβωm=1

∞

∑ dΩ
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

−1

 

    

   

= i lim
β→0

Z0d
ωv0

α ( !ω )D( !ω ) / (2m−1)
m=1

∞∑
!ω 2 −ω 2 − iωβ0

∞

∫ d !ω
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

,      (S12) 

where   !ω = (2m−1)Ω , and   D(Ω)  is the modes density of the 1st-order FP resonances.  For β → 0 , the 

real part of the integral in Eq. (S12) contributes negligibly, owing to the oscillatory nature of the 

integrant. The imaginary part of 
   
limβ→0( !ω 2 −ω 2 − iβω )−1  can be accurately approximated by a delta 

function, hence we have 

   
Z(ω ) !

Z0d
πωv0

α ( "ω )D( "ω )
2m−1

δ (ω 2 − "ω 2 )
m=1

∞

∑ d "ω
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

−1

=
2Z0d
πv0

α (Ω)D(Ω)
2m−1m=1

∞

∑
Ω=ω /(2m−1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

. (S13) 

If we omit the higher order FP resonances and consider only the term  m = 1 , then by recalling that

  D(Ω) = Δn / ΔΩ , we have 0 0/ ( ) ( ) / (2 )n v Z dZp aDW D = W W . Since 0( ) 4 / ( )d N va f pW = W , we have

0/ (2 )[ / ]/ ( )n N Z ZfDW D = W W . By letting /n N dnD ® in the limit of N ®¥ , where ( 1) /n n N= - , 

we have thus derived Eq. (4) in the main text.   
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To include the higher order FP resonances, we recognize that the additional impedances that 

arise from the higher order resonances are in parallel to that arising from the 1st order FP resonances. 

Since now we have to deal with multiple impedances even from a single FP resonator, we would like to 

denote that impedance related to the 1st order FP resonance to be   
!Z(Ω) . In that case 

 
   

dΩ
dn

=
πv0

2d
!Z(Ω)
Z0

⎡

⎣
⎢

⎤

⎦
⎥α (Ω) .         (S14) 

Substitution of Eq. (S14) into Eq. (S13) and separating out the term m=1 from the m-summation, yields 

an equation for   
!Z(Ω) , 

 
   

!Z(ω )−1 = Z(ω )−1 −
!Z(Ω)−1

2m−1
Ω=ω /(2m−1)m=2

∞

∑ .       (S15) 

The value of   !Z  can be obtained from Eq. (S15) through iterations, based on a given target impedance Z . 

Simultaneously, Eq. (S15) also expresses the fact that the target impedance at frequency w  is now the 

consequence of impedance from the 1st order FP resonance, plus the impedance from all the higher order 

FP resonances, added in parallel. 

 For example, if the target  Z = Z0  for  ω >Ωc  and divergent for ω <Ωc , then the value of   !Z can 

be determined in a piecewise fashion as follows. The piecewise fashion of the result is a natural 

consequence (upon iteration) of the step-function nature of the target impedance. The iteration results 

show that    Z0 / !Z1 = 1 in the first frequency range c c[ ,3 ]WÎ W W ,    Z0 / !Z2 = 2 / 3 in the second frequency 

range c c[3 ,5 ]WÎ W W ,    Z0 / !Z3 = 7 / 15  in the third frequency range c c[5 ,7 ]WÎ W W ,    Z0 / !Z4 = 34 / 105  in 

the fourth frequency range c c[7 ,9 ]WÎ W W ,    Z0 / !Z5 = 269 / 1155  in the fifth frequency range 

c c[9 ,11 ]WÎ W W , etc.  In each frequency interval i, i.e., for c c[(2 1) ,(2 1) ]i iWÎ - W + W , the 1st-order FP 

resonance frequency distribution can be determined by Eq. (14).  That is, with the initial condition 

  Ω = (2i −1)Ωc  when the continuous variable ) /( 1 / i in n N n N N= - = = , where  Ni  denotes the total 

number of 1st-order FP resonances below   (2i −1)Ωc , Eq. (S14) gives

   Ωn = (2i −1)Ωc exp[2φ(n − ni ) !Zi / Z0] . From such 1st order FP resonance frequencies one can easily 

determine the required lengths of the FP resonators in the design.   

 In Fig. S2a we plot the natural logarithm of nW  as a function of  (n−1) / N . Here the value off , 

needed for the evaluation of nW , is taken to be the causally optimal value determined below. The 

function   lnΩn  versus   (n−1) / N  is seen to be piecewise hyper-linear.  By using this result, 

discretization of the resonators in the actual design can be easily determined by locating the frequencies 
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on the vertical axis with the associated (equally-spaced) values of   (n−1) / N  with  N  being the total 

number of FP channels one wants to use.  For the broadband absorber presented in the main text with

  N = 16 , these frequencies are explicitly indicated by the red dotted lines in Fig. S2a.    

 
One important feature for the sequence    Z0 / !Zi  is that it decays to zero very quickly (Fig. S2b), 

i.e., the required 1st-order FP modes density in the high frequency regime is very low. This fact is 

relevant to the high frequency absorption behavior for the broadband absorber presented in the main 

text. That is, since
  

α (Ω)D(Ω) / (2m−1) |Ω=ω /(2m−1)m=1

∞∑ = 2d / (πv0 )  (this can be easily deduced from 

Eqs. (S13), (S14), and (S15)), Eq. (S12) can be integrated to yield  

 
  

Z
Z0

= π
π − 2i tanh−1(Ωc /ω )

.         (S16) 

And the relevant reflection coefficient   R = (Z − Z0 ) / (Z + Z0 )  is given by 

 
  
R =

tanh−1(Ωc /ω )
π − i tanh−1(Ωc /ω )

.         (S17) 

 
Fig. S2  (a) Natural logarithm of the 1st order FP resonance frequency plotted as a function of the variable   

as defined in the text. The discretized frequencies are picked off from the curve with equally-
spaced intervals on the horizontal axis. They are indicated by the red dotted lines. (b) The iterated target 
impedance  in Eq. (S14) for the 1st-order FP resonances in the broadband absorber design, in which the 
contributions of higher order FP modes for each channel are taken into account.  Here  is obtained from 
iterations through Eq. (S15) based on a target impedance that is equals to  above a cutoff frequency  and 

 below the cutoff.  The fast decay of  (to zero) guarantees that  can be automatically 
satisfied by the higher order FP modes if the channels are designed in accordance to the recipe.  
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That is, at high frequencies the reflection is zero, i.e., the absorption coefficient must approach 1. 

Therefore, in the broadband absorber design one can use a relatively small number of FP channels, 

designed for the low frequencies by following the proposed recipe above, and high absorption in the 

high frequencies regime becomes guaranteed.  In particular, this would ensure high absorption above 

5000 Hz for the broadband absorber presented in the main text, where there are no measured data.   

So far, the parameterf remains un-determined. Below we show that its value should not be 

arbitrary. Instead, it serves as the critical link between the designed mode density, the sample thickness, 

and the causal constraint.  

In the broadband absorber, the channel length of the FP resonator is given by 

    
   
ℓ n =

πv0

2Ωn

= πv0

exp[2φ(ni − n) "Zi / Z0]
2(2i −1)Ωc

,       (S18) 

provided its 1st-order resonance is located in the frequency range c c[(2 1) ,(2 1) ]i iWÎ - W + W . Since the 

channel length can vary, we wish to know the minimum thickness of the sample by optimally folding the 

FP channels, without changing the overall area exposed to the incident wave. This minimum thickness 

d can be obtained through volume conservation of the FP channels. Here we evaluate d by focusing on 

only the air channels of the FP resonators. Since the FP channels’ cross sections occupy a fraction f  of 

the surface area, d  is given by  

 
   
d = lim

N→∞

ℓ n

Nn=1

N

∑
  
= πv0 lim

N→∞

1
Ω

dn
dΩ

dΩ
Ωc

Ωe (φ )

∫ (2N ) ,      (S19) 

where the upper limit of the integral,
  
Ωe (φ) = lim

N→∞
Ω(n = N ,φ) , is determined by the total number of 1st 

order mode number N, which is equal to the FP channel number.  The numerical evaluation of Eq. (S19), 

with N=16, gives  d = [0.6395−859.74exp(−12.82φ)]v0 / (φΩc ) .  By requiring   d = dmin = 2v0 / (φΩcπ )  

given in the main text, we obtain the causally optimal value 0.982optimalf = , with the upper limit 

 Ωe = 28.4Ωc (indicated in Fig. S2a by the blue dotted line). Since in experimental implementation the 

value of f is determined by the wall thickness in our design, such a high value of optimalf is not realizable 

in practice. However, a lower value of the actual f is seen to only degrade the absorption somewhat, as 

long as the mode distribution (and hence the length of the channels) is designed in accordance with the 

ideal value optimalf . The degradation effect can be seen in Fig. S6, where the designed sample has a lower 

surface coverage 0.8f = , leading to a degradation of reflection from its ideal value by about 5 dB, even 

though the actual value of the absorption coefficient is still in the range of 97-99%.   



8	
  
	
  

As another example, other than the broadband absorber presented in the main text, we have also 

considered a target absorption spectrum which starts with near-perfect absorption from 345 Hz and has a 

notch in the frequency interval [562 Hz, 995 Hz] where the absorption is close to zero. The target 

impedance is given by  Z(ω ) = Z0[2− A(ω )+ 2 1− A(ω )] / A(ω ) . Based on this target impedance the 

impedance    
!Z(ω )  can be obtained from Eq. (S15) through iterations.  Substitution of   !Z  into Eq. (S14) 

gives the designed resonance frequencies   Ωn(N ,φ)  as a function of total channel number  N  and the 

parameterφ . The associated FP channel length   ℓ n can then be determined.  The minimum thickness of 

the absorber,   dmin = 8.73  cm, is determined from the casual integral (S10) of the absorption spectrum 

shown by the dashed line in Fig. 3c in the main text, which is based on the integral of Eq. (S12) with

 N →∞ . In this case the value 0.81optimalf =  is determined from
   
dmin = d = lim

N→∞
ℓ n / N

n=1

N∑ .  The 

experimentally measured absorption for this design, with  N = 16 , is presented in the main text as Fig. 3c.  

Here   d = 8.85  cm, and the real sample thickness is 9.03 cm due to the non-ideal folding of the channels. 

The result shown in Fig. 3c in the main text has a 3-mm layer of sponge placed in front; hence the total 

thickness of the sample is 9.33 cm.  

  

III. Derivation of self-energy due to cross-channel coupling by evanescent waves 

Since the surface impedance of the metamaterial unit is laterally inhomogeneous, it follows that the 

sound pressure field   p(x) , where  x  denotes the lateral coordinate at the plane  z = 0 , must necessarily be 

inhomogeneous as well.  By decomposing the pressure field as    p(x) = p +δ p(x) , where p is the 

surface-averaged value, it has been shown in the main text that    δ p(x)  is only coupled to the evanescent 

waves that decay exponential away from   z = 0 . In contrast, p couples to the far-field propagating 

modes. Therefore, the measured surface impedance should be given by /Z p v=  with   v = du / dt  being 

the surface-averaged z component of the air displacement velocity. Reflection coefficient is given by

0 0( ) / ( )R Z Z Z Z= - + .   

We expand    δ p(x)  in terms of the normalized Fourier basis function    fα (x) = exp[ikα i x] / L , 

where ( , )x ya a=a  is discretized by the condition that the area integral of fa over the surface of the 

metamaterial unit must vanish, due to the fact that the same condition applies to   δ p(x) . That means

    
| kα |= (2π / L) α x

2 +α y
2 , with

   
α x ,α y = ±1,±2,!:  

   
δ p(x, z) = δ

α
∑ pα fα (x)e− kα

2 −k0
2 z ,        (S20) 
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where pd a denotes the expansion coefficient, and 0 2 /k p l= . The exponential variation of    δ p(x, z)

means that it can couple to the z component of the air displacement velocity through Newton’s law, 

  ∂δ p / ∂z = −iωρ0δv , so that  

 
    
δv(x) = δv(x, z = 0) = −i

ωρ0

δ
α
∑ pα | kα |2 −k0

2 fα (x) .     (S21) 

By multiplying both sides of Eq. (S21) by    f ′α
* (x) and integrating over the surface of the metamaterial 

unit’s surface, we can solve for pd a : 

  

    
δ pα = iωρ0

v(x) fα
*(x)dx

surface
∫

| kα |2 −k0
2

,       (S22) 

where   v(x) = v +δv(x) . It should be noted that in the above, the integral of    v(x) fα
*(x)  is the same as 

the integral of   δv(x) fα
*(x) , since the integral of    vfα (x) is zero.  By substituting Eq. (S22) into Eq. (S20) 

and then interchanging the order of summation and integration, we obtain  

   
δ p(x) = δ p(x ,z = 0)= iωρ0 Λ(x,x′)v(x′)dx′

surface
∫ ,     (S23) 

where
    Λ(x,x′) ≡ fα

*( ′x ) fα (x) / | kα |2 −k0
2

α∑ .  Since    | kα |≫ k0 , we can approximate 
    | kα |2 −k0

2 by 

   | kα | . By discretizing the 2D coordinate  x  by its 16 values,  xn , that denotes the center position of the 

nth FP channel, and replacing   dx′ by 2 /16L  and the integral by summation, we have: 

  
δ pn = iωρ0 Λnmvm

m=1

16

∑ ,          (S24) 

   
Λnm = 16

L2

fασ n
∫ (x)dx fα

∗

σm
∫ ( ′x )d ′x

kα

 

       
   
= 16

sin2(α xπ / 4)sin2(α yπ / 4)

π 4α x
2α y

2 kαα
∑ exp ikα • (xm − xn )⎡⎣ ⎤⎦ ,     (S25) 

where  σ n  denotes the cross-sectional area of the   nth  FP channel, and   vm = v(xm ) ,    δ pn = δ p(xn ) . 

 According to the definition of Green function, at the mouth of the  n th FP channel, we have 

   vn = −iωgn( p +δ pn ) .           (S26) 

Substitution of Eq. (S24) into Eq. (S26) gives 
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vn = −iω gn +ω

2ρ0 gn
m
∑ Λnmgm +!

⎛
⎝⎜

⎞
⎠⎟

p   

     
   
= −iω gn +ω

2ρ0gn
2Λnn +ω

4ρ0
2gn

3Λnn
2 +!( ) +ω 2ρ0 gn

m≠n
∑ Λnmgm +!

⎡

⎣
⎢

⎤

⎦
⎥ p   

     
  
= −iω

gn

1−ω 2ρ0gnΛnn

+ Πnm
m
∑

⎛

⎝⎜
⎞

⎠⎟
p .       (S27) 

We have rearranged the series by separating the terms involving only Λnn , since nn nmL >> L (m n¹ ) by 

orders of magnitude.  Numerically, the last term in the bracket is also small and hence only constitutes 

small adjustment to the results.  According to the Eq. (8) in the main text, the renormalized impedance is 

given by
  
Z (e) = 16 p vnn=1

16∑ .  Substitution of Eq. (S27) (with the  
Πnmm∑ term neglected) into this 

expression for (e)Z gives 

  
Z (e) = i ω

16
gn

(e)

n=1

16

∑⎛
⎝⎜

⎞
⎠⎟

−1

,           (S28) 

where the effective Green function can be expressed in the form of the Dyson equation with a self-

energy term:   

 
  

gn
(e)( )−1

= gn
−1 −ω 2ρ0Λ .          (S29) 

Here Λ ≡ Λnn . Below we show this self-energy can predict the resonance frequency shifts of the FP 

resonators. 

 

IV. Shift of the resonance frequencies due to the renormalization effect by evanescent waves 

The exact Green function for a single FP channel with length  ℓ n ,   g = i / (ωZ ) , can be derived from Eq. 

(S11) as 

   
gn =

φ
ωZ0

tan ωℓ n (1+ iβ /ω )ρ0 / B0
⎡
⎣

⎤
⎦ .       (S30) 

Here the coefficient  β = 14.2  Hz is an effective parameter characterizing air's viscosity in FP channels. 

Its value is obtained by fitting the experimental data.  

The renormalized impedance   Z (e)  of the FP resonators array can then be obtained by substituting 

Eq. (S30) into Eqs. (S27) and (S28).  Since the resonance modes are best detected by the imaginary part 

of the Green function, which in the present case is given by
  
Im(G) = Im i ωZ (e)( )⎡

⎣
⎤
⎦ , we have plotted the 

dimensionless quantity   Im(G)ΩcZ0  in Fig. S3. Here  Ωc = 2π × 345  Hz is the cutoff frequency. 
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As shown in Fig. S3, for the metamaterial unit the theoretically predicted positions of the newly 

emerged resonances (solid curve) fit the experiment (open circles) very well, and they all have a clear 

downward shift from the original FP resonances,    Ωn = πv0 / (2ℓ n ) , denoted by the vertical dotted lines. 

Physically, the downshift can be understood as due to the extra air mass participating in the resonant 

motion at the mouth of the FP channel, arising from the evanescent waves.  

 

V. Critical dissipation for casual optimality 

In the main text, the causal optimality of the 16-units broadband absorber is achieved by placing a layer 

of 3 mm acoustic sponge in front of it.  Here we discuss the property requirement for the sponge.  The 

description of sponge’s properties   ρeff = ρ0[1.4+ i(1420 Hz) /ω ]  is a simplified form for the effective 

medium theory of porous medium that assumes the solid skeleton of sponge to be rigid while sounds 

propagates in the pores.  Adapted from Ref [5], according to the model of Johnson et al.6,  ρeff = ρ0α (ω )  

with  α (ω )  being the dynamic tortuosity, given by 

 
2

0 0 0

0 0 0

2( ) 1
v

i ih wr a ka w a
k h
j

wr j
¥

¥

æ ö
= + - ç ÷Lè ø

.       (S31) 

Here, α∞  is the tortuosity of a porous medium that is 1.4 in our case,  η0  is the viscosity of air, j  is the 

sponge porosity, and  κ 0  is its static permeability. 
  
Λv = 2 vinviscid

2

V f
∫ dV / vinviscid

2

S f
∫ dS  is the viscous 

characteristic length with   vinviscid  being the air velocity field in the absence of viscosity, and the two 

integrals are carried on the volume of pores and the surface of solid skeleton, separately.  If the 

 
Fig. S3  The imaginary part of the Green function for the metamaterial unit, plotted as a function of frequency. 
The metamaterial unit consists of 16 FP channels in a  square lattice, shown in Fig. 2a of the main text.  
Here the solid curve is the prediction from the theory including the evanescent waves and the viscosity of air. 
The open circles are results deduced from experimental reflection measurements, where we have used the 
formula . It is seen that the peak positions, which indicate the 
renormalized resonances, are all down-shifted from the dotted lines that mark the original FP resonance 
frequencies ( ’s).  Excellent theory-experiment agreement is seen. 
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frequency is not very high,  α (ω )  can be approximated by   α∞ + iβ /ω  with β =η0φ / (ρ0κ 0 ) .  And the 

dissipation property for a sponge is sensitive to the ratio between its porosity and static permeability. 

 
 In order for the addition of 3 mm sponge to the acoustic metamaterial unit to achieve causal 

optimality, we have calculated the casual integral, Eq. (S10), for absorption spectra with different 

sponge cover characterized by different values ofβ . The results are shown in Fig. S4, where the vertical 

axis is the ratio of dmin divided by the total thickness of the sample. Here h=3 mm is the sponge 

thickness, and d is the minimum thickness of the cuboid sample achievable by perfect folding of the 

longer FP channels. The value of min / ( ) 1d d h+ = indicates causal optimality. In Fig. S4 this ratio, with 

mind calculated by Eq. (S10), is plotted as a function ofβ . It is seen that there is the existence of a 

critical  βc = 946  Hz.  For those sponges with β < βc , casual optimality cannot be satisfied. However, the 

acoustic sponge used in our sample is safely in the range of cb b> .  

 

VI. Comparison with conventional acoustic materials 

In this section, we compare our metamaterial absorber with the conventional acoustic absorption 

materials, the micro-perforated panel (MPP) absorber and acoustic sponge. Owing to measurement 

accuracy, we choose to compare our 6-cm absorption structure with similar thickness MPP absorber and 

acoustic sponge. 

The MPP absorber4 and acoustic sponge are two very effective sound absorbers. However, the 

MPP has proven to be excellent only at multiple distinct frequencies, and such an absorption spectrum 

 

Fig. S4  The minimum thickness  of the broadband absorber in the main text, with  mm sponge in 
front, as dictated by the casual integral, Eq. (S10), in which the absorption spectrum is that predicted by the 
renormalized impedance  in Eqs. (S27) and (S28) with  replaced by .  Here the dissipation 

coefficient  for the front sponge has been treated as a variable. It is seen that there is a critical value 

 Hz above which the causal optimality (defined as ) is attained.  The blue arrow denotes the 
dissipation of the sponge used in the experiment. 
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can also achieve causal optimality, provided the MPP’s perforated hole diameter is small enough (see 

Fig. S5b). 

 
 As shown in Fig. S5a, consider a panel that is   t = 0.2  mm thick, with perforated holes that are 

arranged in a square lattice with a lattice constant   b = 2.5  mm. The panel is backed by a chamber with 

  d = 6  cm4. Maa’s theoretical model4 has proven to be very accurate for characterizing MPP’s 

absorption. For uniform circular perforations with diameter  l  the absorption is given by4 

 
  
A(ω ) = 4r

(1+ r)2 + [ωm− cot(ωd / v0 )2]
.       (S32) 

Here,  

 
  
r =

32η0t
σρ0v0l

kr , kr = 1+ k 2

32
⎡

⎣
⎢

⎤

⎦
⎥

1/2

+ 2
32

k l
t

, 

 
  
m = t

σ v0

km , km = 1+ 1+ k 2

2
⎡

⎣
⎢

⎤

⎦
⎥

−1/2

+ 0.85 l
t

, 

 
Fig. S5  (a) A schematic drawing for the MPP absorber.  (b) The minimal thickness  determined by the 
causal integral of the absorption spectrum, Eq. (S10), for a MPP with perforation diameter , panel thickness 

 mm, lattice constant  mm, and back chamber depth  cm.  The blue arrow indicates the 
perforation’s diameter of =0.2 mm, whose relevant absorption spectrum (blue line and symbols) is shown in 
(c).  (c) Comparison of the absorption spectra for the MPP (blue line (theory) and symbols (experiment)) with 

 mm and a total thickness of ~6 cm; the broadband metamaterial unit covered by a 3-mm layer of 
acoustic sponge, with a total thickness of 5.93 cm (red line (theory) and symbols (experiment)), and a layer of 
6 cm-thick acoustic sponge (green symbols (measured data)).  The blue curve is from Maa’s theoretical model 
Eq. (S32), and the pentagons are the experimental data from Maa’s original paper (4).  (d) A photo image of 
the metamaterial unit with a thickness of 5.63 cm. With the addition of 3 mm of acoustic sponge in front, the 
absorber has a total thickness similar to the MPP.   
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and 

   k = l ωρ0 / (4η0 ), σ = l2π / (4b2 ) , 

where the quantity 0 0/ ( )h wr  is usually denoted the viscous boundary layer thickness.  Here  η0 is 

related to the effective air dissipation parameter b  in the main text, through the solution of the sound 

wave propagation in the FP channel.  

In Fig. S5c, the solid blue line is the theory prediction of the MPP absorption with the parameter 

values given above, and   l = 0.2 mm. The open circles are the experimental results4. The causal integral, 

Eq. (S10), gives    dmin ! d = 6  cm, i.e., causal optimality is satisfied.  In Fig. S5b, we plot the mind  

calculated from the predicted absorption spectra.  It turns out that a critical perforation diameter 

   lc ! 0.025  mm exists, and for   l > lc  causal optimality is not satisfied.  It is somewhat surprising that the 

critical value of the perforation hole diameter agrees so well with the “best” diameter of the holes as 

determined from an entirely different perspective4. 

 
 To compare with the particular MPP absorber whose absorption spectrum is shown in Fig. S5c, 

we have redesigned our broadband metamaterial absorber by setting the cutoff frequency  Ωc = 650  Hz, 

and folded the 16 FP channels into a 5.63 cm thick cuboid.  The value of 0.8f =  for the sample is the 

same as that for the broadband absorber presented in the main text, even though the FP channels were 

designed with 0.982optimalf = .  A photo image of the sample is shown in Fig. S5d.  Four of such units 

 
Fig. S6  Reflection loss (dB) comparison for the 6 cm thick acoustic sponge and 5.93 cm thick metamaterial 
absorber shown in Fig. S5c.  The red curve represents the theory prediction of our metamaterial absorber, and 
the open circles are from experiment. The poorer experimental absorption can be attributed to the lower 
achievable value of as compared to its optimal value . Its effect can be easily assessed by the 

formula . If is 20% larger than , i.e.,  as expected 
by the lower value of , then the absorption would be lowered by 0.8%. The green stars are the 
experimentally measured data of acoustic sponge. To reach the absorption level of our design structure within 
the target range, the sponge thickness would need to be increased by at least 50%. If thin walls can be realized 
technically so that the theory prediction can be realized, then the advantage of the metamaterial absorber in the 
target frequency range (solid line) is seen to be quite substantial. 
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were arranged into a square with the cross section that fits the cross section of the impedance tube (see 

Fig. S5d). The metamaterial unit was covered by a layer of 3 mm thick acoustic sponge, so that the total 

thickness of the absorber, 5.93 cm, is similar to that of the MPP in Maa’s work4.  The absorption 

spectrum of this metamaterial absorber is shown in Fig. S5c (red symbols for the experiment, red line 

the theory prediction). It is seen that near-perfect flat absorption starts around 752 Hz.  The causal 

integral of this spectrum gives   dmin = 5.86  cm, very close to the actual thickness of the sample.  In the 

same figure, we also compared the absorption of a layer of 6 cm sponge with rigid substrate.  The 

sponge absorption coefficient is noted to be also causally optimal.  It is clear that the three causally 

optimal structures exhibit absorption behaviors that are very different. The MPP starts its maximum 

absorption at a lower frequency,  ~ 640  Hz, but quickly drops to nearly zero before its next resonance. 

And although the sponge exhibits a broadband absorption, it trades off poorer performance in higher 

frequencies as compared to the designed metamaterial absorber, against a somewhat better absorption at 

lower frequencies. This comparison emphasizes the fact that, in the causal inequality, low frequency 

behavior dominates the contribution to the sample thickness. Here, the somewhat better low frequency 

absorption of the MPP or sponge is at the cost of degrading the absorption over large ranges of higher 

frequencies. The novelty of our approach lies in making the absorption spectrum tunable, while 

integrating the causal optimality as part of the design. 

 In engineering practice, decibel (dB) is a more relevant unit.  In Fig. S6 we compare the 

absorption by 6 cm of sponge against that by the 5.93 cm thick metamaterial, by their reflection loss 

characterized in decibels.  It is seen from Fig. S6 that in the target frequency regime, i.e., above 800 Hz, 

our metamaterial absorber has an advantage of ~5 to 10 dB in reducing the reflection through 

absorption. To reach the same level of absorption within the target frequency range, the sponge 

thickness needs to be increased by a factor of at least 50%. If the thin walls can be technically realized in 

our metamaterial unit, then the advantage over conventional absorbers can be fairly substantial within 

the target range, i.e, between 10-15 dB if the solid red line is used for comparison in Fig. S6. 
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