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I. Causality constraint on sound absorbing structures

Consider a layer of composite material backed by a rigid reflective wall (Fig. Sla). In response to an

incident sound wave, the reflected sound pressure p (¢) is the superposition of the direct reflection of
the incoming sound pressure at that instant, p (¢) plus those in response to the incoming sound wave at

earlier time, p,(¢ —7), with 7>0. Hence

p,()=] K@p,i-7)dt, (S1)

where K(7) is the response kernel in the time domain. By carrying out Fourier transform
p,, ()= r D, /r(t)ei“’[dt, the reflection coefficient for each frequency may be expressed as

R(w)= LAC). j:K(r)ef“”dr : (S2)

p(o)
From Eq. (S2), R(w) is an analytic function of complex @ in the upper half of the complex @ plane. In
terms of the wavelength A =27v, /@, where v, is the speed of sounds in air, that means R(A)has no

singularities in the lower half-plane of complex A, but may have zeros that represent total absorptions
of incoming energy. Here the imaginary part of A reflects dissipation.

To determine the constraint on the reflection coefficient R(A) by the causality principle, we

introduce an ancillary function R(A)after Fano and Rozanov'?,
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where 4 , satisfying R(A4,) =0, are the zeros located in the lower half-plane of complex 4, and * stands

for complex conjugation. Since R has neither zeros nor poles at Im(1) <0, InR is an analytic function

in the lower half-plane of complex A and the Cauchy theorem is valid, i.e., the integral over a closed

contour C in the lower half-plane of complex A should yield zero, where the contour consists of the

real axis of and the semicircle C_, which belongs to the lower half-plane and has infinite radius as

shown in Fig. S1b. Hence



[ nRd2= [ mRar+ [ mRar=o. (S4)

Note that | R|=| R| at real wavelengths and In|R| is an even function of A according to its definition

Eq. (S2). Taking the real part of Eq. (S4) yields

N o A=A
Re jclan,l =2 jo In|R|dA+ ReJ.CN InRdA + Re; jcm In"—+d2=0. (S5)
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Fig. S1 (a) Schematic for the geometry of composite absorbing layer. (b) The contour for the integral in Eq.
(S4).

To calculate the second integral on the right-hand-side of Eq. (S5), we consider the infinite-
wavelength limit of R, i.e., the static limit. The reflection from a composite material layer can be

characterized by an effective bulk modulus B relating to its surface responses’. The surface
displacement # under a  pressure p is  therefore given by the relation
(pressure) = (effective bulk modulus) X (strain), or u = pd / B, with d being the sample thickness. The
resulting surface impedance is given by Z =ip /(wu)=iZ B A/ (2nB,d) with Z = B /v, being the air

impedance and B, the bulk modulus of air. Therefore, the reflection coefficient R=(Z—-Z2))/(Z+Z))

is given by
_ 1+ z:anBO /(AB) ' (S6)
1-i2rndB,/ (AB,)
Since ‘hlm InR=idrdB,/(AB,), the contour integral is therefore given by
| InRdA=lim| "iAlnRdO =4x’dB, | B,; . (S7)
c. 1AI—>0J0

where 0 is the argument of complex A. It should be noted that by taking the limit of |1 |—> woin the

above contour integral, one is essentially counting all the poles of In R in the lower half of the complex
A plane, with the imaginary part of each pole being relevant to the absorption of each resonance of the

system. This is evident from the fact that in our previous work’, it has been shown that the static limit
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frequency of the system and ¢, the relevant oscillator strength defined in the main text. Hence taking
the limit of | A | > coimplies all the absorptions related to the resonances of the system are taken into

account. In fact, for the designed structures shown in this work, if we let d = d as defined in Eq. (S19)

below, then the above formula for B . (1 — o0)is accurately equal to B, /¢ with porosity p=V_ /V,
being the volume fraction of the air phase. This is in agreement with Wood’s formula for the composite
effective bulk modulus in the static limit, given by Be_ﬂlv = @B, ! +(1—q))BS"01li .- Since B . >> B,
B . = B,/ ¢ follows. In addition, for samples with identical FP channels either straight or folded, p = ¢ =

S /S, where §_ is the area of FP channels’ total surface cross sectional area and S, being the total

area of the sample surface exposed to incident sound. Hence in this work we have B . = B /¢
For  the third integral on  the  right-hand-side of Eq. (S5), since
Vluim In[(A-A")/ (A=A )]=i2Im(A )/ A, we have

A=A e A=A
J.len A= im | z;tlnmde—Zﬂ:Im(ln). (S8)

n

Substitution of Egs. (S7) and (S8) into Eq. (S5) yields

~["In|R(A)|dA=2m"d(B, | B)+ 7Y, Im(4,). (S9)

As[1—A(A)]= R(A) [, where A(A)stands for the absorption coefficient, and all A are in the lower
half-plane, i.e.,Im(4,) <0, we therefore have the inequality

1 B,|¢~
=———< In[l- A(A)]dA
min 471_2 BO j n[ ( )]

0

<d. (S10)

It follows from Eq. (S9) that the equality in (S10) is attained when R(A) has no zeros in the
lower half-plane of complex A . Such R(A) corresponds to the minimum phase-shift frequency

dependence” * for which the variation of the phase of the reflection coefficient with A does not exceed

2m, in the domain0 < A <.

I1. Inclusion of higher order FP resonances in the design strategy

In this section we give the derivation of the design algorithm that includes all the higher order FP

resonances. For a FP channel with length 7 , its surface impedance is defined at its mouth, z=0, by

Z = p(0)/v(0), with



p(z)= cos[a)(z+£n)\/(1+ iB/w)p, /B, }

W(z)= —isin[a)(z+ ()Ja+iplo)p, /B, }/zo .

For an array of N FP channels with various lengths facing the incident sound wave in parallel, their

total impedance is given by

=iZO{¢itan[w£n\/(l+iﬁ/a))po/BO}} = {Zz(m 5 Qz . , (S11)

n=1 m=1 lﬂw

where ¢ is the structure’s surface porosity (fraction of the total surface area occupied by the open

mouths of the FP channels), Q =mv /(2()) is the 1*-order FP resonance of the nth FP resonator, the
terms with m>1 stand for higher order FP resonances, and oscillator strength
o, =2d¢/ (¢ N)=4d¢Q /(mv,N). Itis easy to see that Eq. (SI1) is equivalent to Eq. (2) in the main
text if we take only the terms withm =1.

In the ideal case, ¢, is continuously distributed, i.e.,  is a continuous variable, Eq. (S11) can

be converted into an integral:

_ ot Lo a(€2)D(Q)
llﬁlg(}(ov J.Z(Zm—l)zﬁz—wz—iﬁa)
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, (S12)
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where @ = (2m—1)Q, and D(Q) is the modes density of the 1*-order FP resonances. Forf8 — 0, the
real part of the integral in Eq. (S12) contributes negligibly, owing to the oscillatory nature of the

integrant. The imaginary part of lim [HO((I)Z —®*—ifw)™" can be accurately approximated by a delta

function, hence we have

Z0)= 2 [ S H P 50 - Nz)dd)} =2Z°d[i“(gw(g) ] SNSE
Q=w/(2m-1)

v, 2m—1

m=1 m=1

If we omit the higher order FP resonances and consider only the termm =1, then by recalling that
D(Q)=An/AQ , we have AQ/An=rv,a(Q)Z(Q)/(2Z,d) . Since a(Q)=4d¢d/(Nnv,), we have
AQ/ An=Q2¢/ N)Z(Q)/ Z,]. By letting An/ N — dn in the limit of N - o0, wheren =(n-1)/ N,

we have thus derived Eq. (4) in the main text.



To include the higher order FP resonances, we recognize that the additional impedances that
arise from the higher order resonances are in parallel to that arising from the 1* order FP resonances.

Since now we have to deal with multiple impedances even from a single FP resonator, we would like to

denote that impedance related to the 1% order FP resonance to be Z(Q) . In that case

dQ_m,[2@)
an 2d[ z }“(9)' (S14)

0
Substitution of Eq. (S14) into Eq. (S13) and separating out the term m=1 from the m-summation, yields

an equation for Z(Q),

Z(w)"'=Z(w)" - i i (n?_)

m=2

(S15)

Q=w/(2m-1)

The value of Z can be obtained from Eq. (S15) through iterations, based on a given target impedance Z .
Simultaneously, Eq. (S15) also expresses the fact that the target impedance at frequency @ is now the
consequence of impedance from the 1* order FP resonance, plus the impedance from all the higher order

FP resonances, added in parallel.
For example, if the targetZ = Z for @ >Q_and divergent form <€ , then the value of Z can

be determined in a piecewise fashion as follows. The piecewise fashion of the result is a natural
consequence (upon iteration) of the step-function nature of the target impedance. The iteration results

show that Z,/Z =1 in the first frequency range Qe[Q,,3Q_], Z,/Z,=2/3 in the second frequency
range Qe[3Q ,5Q ], Z, /23 =7/15 in the third frequency range Q e[5Q,7Q ], Z, /24 =34/105 in
the fourth frequency range Qe[7Q.,9Q.], Z / ZS =269/1155 in the fifth frequency range
Qe[9Q,,11Q,_], ete. In each frequency interval i, i.e., forQe[(2i—1)Q_,(2i +1)Q,], the 1*-order FP

resonance frequency distribution can be determined by Eq. (14). That is, with the initial condition

Q=(2i-1)Q, when the continuous variable 7 =(n—1)/ N =n,=N,/ N, where N, denotes the total
number of  1%-order FP  resonances  below 2i-HQ, , Eq. (S14)  gives
Q =(2i-1)Q_exp[2¢(n _’_Zi)Zi/ Z,]. From such 1*" order FP resonance frequencies one can easily

determine the required lengths of the FP resonators in the design.

In Fig. S2a we plot the natural logarithm of Q  as a function of(n—1)/ N . Here the value of ¢,
needed for the evaluation of Q , is taken to be the causally optimal value determined below. The
function InQ versus (n—1)/N is seen to be piecewise hyper-linear. By using this result,

discretization of the resonators in the actual design can be easily determined by locating the frequencies



on the vertical axis with the associated (equally-spaced) values of (n—1)/ N with N being the total

number of FP channels one wants to use. For the broadband absorber presented in the main text with
N =16, these frequencies are explicitly indicated by the red dotted lines in Fig. S2a.
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Fig. S2 (a) Natural logarithm of the 1% order FP resonance frequency plotted as a function of the variable
(n—1)/ N as defined in the text. The discretized frequencies are picked off from the curve with equally-

spaced intervals on the horizontal axis. They are indicated by the red dotted lines. (b) The iterated target
impedance Z in Eq. (S14) for the 1%-order FP resonances in the broadband absorber design, in which the
contributions of higher order FP modes for each channel are taken into account. Here Z is obtained from

iterations through Eq. (S15) based on a target impedance that is equals to Z  above a cutoff frequency € and

Z,/Z =0 below the cutoff. The fast decay of Z / Z (to zero) guarantees that Z = Z , can be automatically
satisfied by the higher order FP modes if the channels are designed in accordance to the recipe.
One important feature for the sequence Z /Zl. is that it decays to zero very quickly (Fig. S2b),
i.e., the required 1%-order FP modes density in the high frequency regime is very low. This fact is
relevant to the high frequency absorption behavior for the broadband absorber presented in the main
text. That is, since zzzla(Q)D(Q)/ (2m-1) ]sz/(zm_l) =2d/(mv,) (this can be easily deduced from

Egs. (S13), (S14), and (S15)), Eq. (S12) can be integrated to yield
Z /4

Z, m—2itanh™(Q_ /@)

(S16)

And the relevant reflection coefficient R=(Z-Z)/(Z + Z,) is given by

tanh™(Q /
R=_n (_lc © (S17)
rw—itanh™ (Q /o)




That is, at high frequencies the reflection is zero, i.e., the absorption coefficient must approach 1.
Therefore, in the broadband absorber design one can use a relatively small number of FP channels,
designed for the low frequencies by following the proposed recipe above, and high absorption in the
high frequencies regime becomes guaranteed. In particular, this would ensure high absorption above
5000 Hz for the broadband absorber presented in the main text, where there are no measured data.

So far, the parameter ¢ remains un-determined. Below we show that its value should not be

arbitrary. Instead, it serves as the critical link between the designed mode density, the sample thickness,
and the causal constraint.

In the broadband absorber, the channel length of the FP resonator is given by

v - v, = v, exp[2(/)(nf.—n)Zl. /ZO] ’ (S18)
"2Q 2(2i-1)Q,

provided its 1*-order resonance is located in the frequency range Q e [(2i—1)Q_,(2i +1)Q,_]. Since the
channel length can vary, we wish to know the minimum thickness of the sample by optimally folding the
FP channels, without changing the overall area exposed to the incident wave. This minimum thickness
d can be obtained through volume conservation of the FP channels. Here we evaluate d by focusing on

only the air channels of the FP resonators. Since the FP channels’ cross sections occupy a fraction ¢ of

the surface area, d is given by

N—oco N—>oo

- lim 2— = v, li “’”iﬂdg /(ZN) (S19)

where the upper limit of the integral, Q (¢)= Zlvim Q(n=N,9), is determined by the total number of 1%

order mode number N, which is equal to the FP channel number. The numerical evaluation of Eq. (S19),
with N=16, gives d =[0.6395—859.74exp(—12.82¢)v, / (¢Q.) . By requiring d =d__=2v,/(¢Q 1)

given in the main text, we obtain the causally optimal value ¢, =0.982, with the upper limit

optimal

Q_ =28.4Q (indicated in Fig. S2a by the blue dotted line). Since in experimental implementation the
value of ¢is determined by the wall thickness in our design, such a high value of ¢, . is not realizable

in practice. However, a lower value of the actual @is seen to only degrade the absorption somewhat, as
long as the mode distribution (and hence the length of the channels) is designed in accordance with the

ideal value ¢, The degradation effect can be seen in Fig. S6, where the designed sample has a lower

optimal *
surface coverage ¢ = 0.8, leading to a degradation of reflection from its ideal value by about 5 dB, even

though the actual value of the absorption coefficient is still in the range of 97-99%.



As another example, other than the broadband absorber presented in the main text, we have also
considered a target absorption spectrum which starts with near-perfect absorption from 345 Hz and has a
notch in the frequency interval [562 Hz, 995 Hz] where the absorption is close to zero. The target
impedance is given by Z(w)=Z[2- A(w)+2,/1- A(w)]/ A(w) . Based on this target impedance the
impedance Z(w) can be obtained from Eq. (S15) through iterations. Substitution of Z into Eq. (S14)
gives the designed resonance frequencies Q (N,9) as a function of total channel number N and the

parameter ¢ . The associated FP channel length ¢ can then be determined. The minimum thickness of

the absorber, d . =8.73 cm, is determined from the casual integral (S10) of the absorption spectrum

shown by the dashed line in Fig. 3c in the main text, which is based on the integral of Eq. (S12) with

N —co . In this case the value ¢

optimal

=0.81 is determined from a’min =d = lim ZWN:IE ., /N . The

N—oo

experimentally measured absorption for this design, with N =16, is presented in the main text as Fig. 3c.
Here d =8.85 cm, and the real sample thickness is 9.03 cm due to the non-ideal folding of the channels.
The result shown in Fig. 3¢ in the main text has a 3-mm layer of sponge placed in front; hence the total

thickness of the sample is 9.33 cm.

II1. Derivation of self-energy due to cross-channel coupling by evanescent waves
Since the surface impedance of the metamaterial unit is laterally inhomogeneous, it follows that the

sound pressure field p(x), where x denotes the lateral coordinate at the plane z =0, must necessarily be
inhomogeneous as well. By decomposing the pressure field as p(x)=p+0p(x), where p is the
surface-averaged value, it has been shown in the main text that J p(x) is only coupled to the evanescent
waves that decay exponential away fromz=0. In contrast, p couples to the far-field propagating
modes. Therefore, the measured surface impedance should be given by Z = p/v with v = du / dt being
the surface-averaged z component of the air displacement velocity. Reflection coefficient is given by
R=(Z-Z2))/(Z+Z,).

We expand Jp(x) in terms of the normalized Fourier basis function f, (x)=exp[ik  +x]/L,
where a =(«,,,) is discretized by the condition that the area integral of f, over the surface of the

metamaterial unit must vanish, due to the fact that the same condition applies tod p(x). That means

|k, =/ L)jol +o , wither o, =142,

Sp(x,2)= Y 6p, f.(x)e Vo (S20)



where 6 p denotes the expansion coefficient, and k, =27/ 4. The exponential variation of J p(x,z)

means that it can couple to the z component of the air displacement velocity through Newton’s law,

d0p/ 9z =—iwp6v, so that
Sv(x) = Sv(x,z = 0) = %245[)0‘ Ik, [} =k f,(x). (S21)
0 o

By multiplying both sides of Eq. (S21) by f. ;,(X) and integrating over the surface of the metamaterial

unit’s surface, we can solve for op, :

J v(x)f;(x)dx

. surface
6pa =1p, \/| K, |2 —koz ) (522)

where v(x) =V + 0v(x) . It should be noted that in the above, the integral of v(x) f;(x) is the same as

the integral of 6v(x) f, ; (x), since the integral of vf, (x)is zero. By substituting Eq. (522) into Eq. (S20)
and then interchanging the order of summation and integration, we obtain

S p(x) =8 p(x,z=0) = iap, j A, X W(x")dx’, (S23)

surface
where A(x,x") = Zaf;(x’)fa(x)/,“ka F —ko2 . Since|k  [»k,, we can approximate /|k_ F —ko2 by
|k, |. By discretizing the 2D coordinate x by its 16 values, x , that denotes the center position of the

nth FP channel, and replacing dx’ by [’ /16 and the integral by summation, we have:

16
Sp,=iwp, > A v, (S24)

m=1

16 LH fa(x)dem fr(x"ydx’
“TE R

sin® (o, 7t / 4)sin®(or 7/ 4)

=16),

ﬂ4a2a2‘k ‘ exp| ik, o(x,—x,)], (S25)
o x Uyl a

where o denotes the cross-sectional area of the n™ FP channel, and v =v(X, ), 0p =0p(X,).
According to the definition of Green function, at the mouth of the # th FP channel, we have
v =—iwg (p+0p,). (S26)

Substitution of Eq. (S24) into Eq. (S26) gives



m

v, =—io| g, +0’p, Y. g A, g + ]p

:_lw (g To pngA T p2 3Ajn .)+w2p02gnAnmgm+.“i|[_?

m#n

——io| ———+ Y1 |p. (S27)
1 o pOgn nn ; j

We have rearranged the series by separating the terms involving only A, since A, >> A, (m#n) by

orders of magnitude. Numerically, the last term in the bracket is also small and hence only constitutes

small adjustment to the results. According to the Eq. (8) in the main text, the renormalized impedance is
given by Z© = 1613/ Zj;vn . Substitution of Eq. (S27) (with the zml_lnm term neglected) into this

expression for Z© gives

-1
76 _ l[ 0 3 g@] ’ (S28)

n=1

where the effective Green function can be expressed in the form of the Dyson equation with a self-

energy term:

-1
(¢9) =g,'-a’p,A. (S29)
Here A=A . Below we show this self-energy can predict the resonance frequency shifts of the FP

resonators.

IV. Shift of the resonance frequencies due to the renormalization effect by evanescent waves

The exact Green function for a single FP channel with length? , g=i/(@wZ), can be derived from Eq.

(S11) as

g = wlztan[wfn\/miﬁ/w)po /B, ] (S30)

Here the coefficient 8 =14.2 Hz is an effective parameter characterizing air's viscosity in FP channels.
Its value is obtained by fitting the experimental data.

The renormalized impedance Z of the FP resonators array can then be obtained by substituting

Eq. (S30) into Egs. (S27) and (S28). Since the resonance modes are best detected by the imaginary part

of the Green function, which in the present case is given by Im(G) = Im[z/(a)Z (e))}, we have plotted the

dimensionless quantity Im(G)€2 Z; in Fig. S3. Here Q_=27x345 Hz is the cutoff frequency.
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Fig. S3 The imaginary part of the Green function for the metamaterial unit, plotted as a function of frequency.
The metamaterial unit consists of 16 FP channels in a 4 X4 square lattice, shown in Fig. 2a of the main text.
Here the solid curve is the prediction from the theory including the evanescent waves and the viscosity of air.
The open circles are results deduced from experimental reflection measurements, where we have used the

formula Im(G)Q Z = Im{—iQC(R—l)/[a)(R+1)]}. It is seen that the peak positions, which indicate the
renormalized resonances, are all down-shifted from the dotted lines that mark the original FP resonance
frequencies (L2 ’s). Excellent theory-experiment agreement is seen.

As shown in Fig. S3, for the metamaterial unit the theoretically predicted positions of the newly

emerged resonances (solid curve) fit the experiment (open circles) very well, and they all have a clear
downward shift from the original FP resonances, Q =mv,/(2/,), denoted by the vertical dotted lines.

Physically, the downshift can be understood as due to the extra air mass participating in the resonant

motion at the mouth of the FP channel, arising from the evanescent waves.

V. Critical dissipation for casual optimality
In the main text, the causal optimality of the 16-units broadband absorber is achieved by placing a layer
of 3 mm acoustic sponge in front of it. Here we discuss the property requirement for the sponge. The

description of sponge’s properties p . = p [1.4+i(1420 Hz)/w] is a simplified form for the effective

medium theory of porous medium that assumes the solid skeleton of sponge to be rigid while sounds

propagates in the pores. Adapted from Ref [5], according to the model of Johnson et al.’, P = P,o(®)

with (@) being the dynamic tortuosity, given by

2
a(w)=a, +-h? 1—""’00(2%’(0] . (S31)
WOPK, o A

Here, a is the tortuosity of a porous medium that is 1.4 in our case, 7, is the viscosity of air, ¢ is the

. . . . are _ 2 2 . .
sponge porosity, and x, is its static permeability. A _2J.V_, Vi ieid@V ! -[s,. Vi @S 18 the viscous

characteristic length with v.

inviscid

being the air velocity field in the absence of viscosity, and the two

integrals are carried on the volume of pores and the surface of solid skeleton, separately. If the

11



frequency is not very high, (@) can be approximated by o +i8/w withf=n¢/(pkx,). And the

dissipation property for a sponge is sensitive to the ratio between its porosity and static permeability.

1 o
E\ 09 i i e*gsponge
+ 1
IE |
~08f |
E ‘
© 1
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1 ‘3(: : 1
0 500 1000 1500
B (Hz)

Fig. S4 The minimum thickness d_ of the broadband absorber in the main text, with #=3 mm sponge in
front, as dictated by the casual integral, Eq. (S10), in which the absorption spectrum is that predicted by the

renormalized impedance Z in Egs. (S27) and (S28) with p, replaced by p Here the dissipation

spong *

coefficient B for the front sponge has been treated as a variable. It is seen that there is a critical value

B_ =946 Hz above which the causal optimality (defined asd = d ) is attained. The blue arrow denotes the
dissipation of the sponge used in the experiment.

In order for the addition of 3 mm sponge to the acoustic metamaterial unit to achieve causal
optimality, we have calculated the casual integral, Eq. (S10), for absorption spectra with different

sponge cover characterized by different values of . The results are shown in Fig. S4, where the vertical
axis is the ratio of dni, divided by the total thickness of the sample. Here A=3 mm is the sponge
thickness, and d is the minimum thickness of the cuboid sample achievable by perfect folding of the
longer FP channels. The value of d_._/(d +h) = lindicates causal optimality. In Fig. S4 this ratio, with
d_, calculated by Eq. (S10), is plotted as a function of 8. It is seen that there is the existence of a
critical 8, =946 Hz. For those sponges with 8 < 8, casual optimality cannot be satisfied. However, the

acoustic sponge used in our sample is safely in the range of 5 > £,

VI. Comparison with conventional acoustic materials
In this section, we compare our metamaterial absorber with the conventional acoustic absorption
materials, the micro-perforated panel (MPP) absorber and acoustic sponge. Owing to measurement
accuracy, we choose to compare our 6-cm absorption structure with similar thickness MPP absorber and
acoustic sponge.

The MPP absorber’ and acoustic sponge are two very effective sound absorbers. However, the

MPP has proven to be excellent only at multiple distinct frequencies, and such an absorption spectrum

12



can also achieve causal optimality, provided the MPP’s perforated hole diameter is small enough (see

Fig. S5b).
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Fig. S5 (a) A schematic drawing for the MPP absorber. (b) The minimal thickness d determined by the

causal integral of the absorption spectrum, Eq. (S10), for a MPP with perforation diameter/, panel thickness
t=0.2 mm, lattice constant b=2.5 mm, and back chamber depth d =6 cm. The blue arrow indicates the
perforation’s diameter of /=0.2 mm, whose relevant absorption spectrum (blue line and symbols) is shown in
(¢). (¢) Comparison of the absorption spectra for the MPP (blue line (theory) and symbols (experiment)) with
/=0.2 mm and a total thickness of ~6 cm; the broadband metamaterial unit covered by a 3-mm layer of
acoustic sponge, with a total thickness of 5.93 c¢m (red line (theory) and symbols (experiment)), and a layer of
6 cm-thick acoustic sponge (green symbols (measured data)). The blue curve is from Maa’s theoretical model
Eq. (S32), and the pentagons are the experimental data from Maa’s original paper (4). (d) A photo image of
the metamaterial unit with a thickness of 5.63 cm. With the addition of 3 mm of acoustic sponge in front, the
absorber has a total thickness similar to the MPP.

As shown in Fig. S5a, consider a panel that is =0.2 mm thick, with perforated holes that are
arranged in a square lattice with a lattice constant »=2.5 mm. The panel is backed by a chamber with
d=6 cm® Maa’s theoretical model* has proven to be very accurate for characterizing MPP’s

absorption. For uniform circular perforations with diameter / the absorption is given by*

Aw) = 4r

) | _ (S32)
(1+7r)" +[wm—cot(wd / v,)"]

Here,

12
32n ¢ 2
g 32 t

opvl " 32 32

y 2 1/2 [
m=——-=rWk_, km=1+{l+—} +0.85-,
ov, 2 t
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and

k=1LJwp,/(4n,), o=0Irn/(4b"),
where the quantity \/77, / (wp,) is usually denoted the viscous boundary layer thickness. Here 1), is

related to the effective air dissipation parameter £ in the main text, through the solution of the sound

wave propagation in the FP channel.
In Fig. S5c, the solid blue line is the theory prediction of the MPP absorption with the parameter

values given above, and /=0.2 mm. The open circles are the experimental results’. The causal integral,
Eq. (S10), gives d_.=d =6 cm, ie., causal optimality is satisfied. In Fig. S5b, we plot the d_._
calculated from the predicted absorption spectra. It turns out that a critical perforation diameter
. =0.025 mm exists, and for / >/ causal optimality is not satisfied. It is somewhat surprising that the

critical value of the perforation hole diameter agrees so well with the “best” diameter of the holes as

determined from an entirely different perspective”.
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Fig. S6 Reflection loss (dB) comparison for the 6 cm thick acoustic sponge and 5.93 cm thick metamaterial
absorber shown in Fig. S5c. The red curve represents the theory prediction of our metamaterial absorber, and
the open circles are from experiment. The poorer experimental absorption can be attributed to the lower

achievable value of ¢ =(.8as compared to its optimal value ¢0pﬁma,. Its effect can be easily assessed by the

formula 4 = 1—[(Z 1Z,-1)/(Z]Z, +1)]2. If Z/Z,is 20% largerthanZ / Z =1, 1.e., Z/Z,=1.2 as expected
by the lower value of ¢ =0.8, then the absorption would be lowered by 0.8%. The green stars are the
experimentally measured data of acoustic sponge. To reach the absorption level of our design structure within

the target range, the sponge thickness would need to be increased by at least 50%. If thin walls can be realized
technically so that the theory prediction can be realized, then the advantage of the metamaterial absorber in the
target frequency range (solid line) is seen to be quite substantial.

To compare with the particular MPP absorber whose absorption spectrum is shown in Fig. S5c,
we have redesigned our broadband metamaterial absorber by setting the cutoff frequency Q_ =650 Hz,
and folded the 16 FP channels into a 5.63 cm thick cuboid. The value of ¢ =0.8 for the sample is the
same as that for the broadband absorber presented in the main text, even though the FP channels were

designed with ¢ =0.982. A photo image of the sample is shown in Fig. S5d. Four of such units

optimal
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were arranged into a square with the cross section that fits the cross section of the impedance tube (see
Fig. S5d). The metamaterial unit was covered by a layer of 3 mm thick acoustic sponge, so that the total
thickness of the absorber, 5.93 cm, is similar to that of the MPP in Maa’s work®. The absorption
spectrum of this metamaterial absorber is shown in Fig. S5c¢ (red symbols for the experiment, red line

the theory prediction). It is seen that near-perfect flat absorption starts around 752 Hz. The causal

integral of this spectrum gives d__=5.86 cm, very close to the actual thickness of the sample. In the

same figure, we also compared the absorption of a layer of 6 cm sponge with rigid substrate. The
sponge absorption coefficient is noted to be also causally optimal. It is clear that the three causally
optimal structures exhibit absorption behaviors that are very different. The MPP starts its maximum
absorption at a lower frequency, ~ 640 Hz, but quickly drops to nearly zero before its next resonance.
And although the sponge exhibits a broadband absorption, it trades off poorer performance in higher
frequencies as compared to the designed metamaterial absorber, against a somewhat better absorption at
lower frequencies. This comparison emphasizes the fact that, in the causal inequality, low frequency
behavior dominates the contribution to the sample thickness. Here, the somewhat better low frequency
absorption of the MPP or sponge is at the cost of degrading the absorption over large ranges of higher
frequencies. The novelty of our approach lies in making the absorption spectrum tunable, while
integrating the causal optimality as part of the design.

In engineering practice, decibel (dB) is a more relevant unit. In Fig. S6 we compare the
absorption by 6 cm of sponge against that by the 5.93 cm thick metamaterial, by their reflection loss
characterized in decibels. It is seen from Fig. S6 that in the target frequency regime, i.e., above 800 Hz,
our metamaterial absorber has an advantage of ~5 to 10 dB in reducing the reflection through
absorption. To reach the same level of absorption within the target frequency range, the sponge
thickness needs to be increased by a factor of at least 50%. If the thin walls can be technically realized in
our metamaterial unit, then the advantage over conventional absorbers can be fairly substantial within

the target range, i.e, between 10-15 dB if the solid red line is used for comparison in Fig. S6.
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