Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Au₆S₂ Monolayer Sheets: Metallic and Semiconducting Polymorphs

Qisheng Wu,^{‡ab} Wen Wu Xu,^{‡bc} Bingyan Qu,^{fb} Liang Ma,^b Xianghong Niu,^a Jinlan Wang,^{ae*} and Xiao Cheng Zeng^{bd*}

^aSchool of Physics, Southeast University, Nanjing 211189, China

^bDepartment of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States

^cDivision of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

^dBeijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China

^eSynergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University Changsha, Hunan 410081, P. R. China

^fSchool of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China

*Email: jlwang@seu.edu.cn; xzeng1@unl.edu

Table S1. The calculated relative energies and the lowest frequencies of octahedral $Au_6(2e)$ and triangular prism $Au_6(2e)$.

	octahedral $Au_6(2e)$	triangular prism $Au_6(2e)$
Relative energy/eV	0	0.45
The lowest frequency/cm ⁻¹	43.5	-34.9

Table S2. Test on reliability of our methods. Computed average Au-Au bond lengths, Au-S bond lengths and Au-S-Au angles for two thiolate-protected gold clusters are compared with experiment.

Au-S system	Parameters	our calculations	experiment	error
	Au-Au length (Å)	2.856	2.833	0.81%
Au ₁₀₈ S ₂₄ (PPh ₃) ₁₆ [ref 1]	Au-S length (Å)	2.495	2.478	0.69%
	Au-S-Au angle (°)	97.456	96.866	0.61%
Au-S system	Parameters	our calculations	experiment	error
	Au-Au length (Å)	2.903	2.885	0.62%
Au ₂₈ (SR) ₂₀ [ref 2]	Au-S length (Å)	2.329	2.323	0.26%
	Au-S-Au angle (°)	96.75	96.53	0.23%

References:

(1) Kenzler, S.; Schrenk, C.; Schnepf, A. Au₁₀₈S₂₄(PPh)₁₆: A Highly Symmetric Nanoscale Gold Cluster Confirms the General Concept of Metalloid Clusters. *Angew. Chem. Int. Ed.* **2016**, *55*, 1-5.

(2) Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D. E.; Rosi, N. L.; Jin, R. Isomerism in Au₂₈(SR)₂₀ Nanocluster and Stable Structures. *J. Am. Chem. Soc.* **2016**, *138*, 1482-1485.

Figure S1. A history of CALYPSO search performed on $(Au_3S)_x$ (x=1-4) monolayers.

Figure S2. Some typical low-energy freestanding $(Au_3S)_x$ (x = 1-4) monolayers searched based on the CALYPSO program. Their relative energies compared to monolayer with the lowest energy are computed at PBE+SOC level. Au and S atoms are marked with gold and red spheres, respectively. Solid blue frames indicate boundaries of primitive cells.

Figure S3. (a) $Au_4(2e)$ -(AuS)₄ chain in G-Au₆S₂ monolayer. (b) Double helical chains composed of tetrahedral $Au_4(2e)$ elementary blocks are protected by staple motifs [Taken from the reference "Xu, W. W.; Li, Y.; Gao, Y.; Zeng, X. C. Unraveling a generic growth pattern in structure evolution of thiolate-protected gold nanoclusters. *Nanoscale*, **2016**, 8, 7396–7401"].

Figure S4. The delocalized 1S orbitals of $Au_6(2e)$ in T- Au_6S_2 monolayer (a) and Mo(2e) in T- MoS_2 monolayer (b).

Figure S5. (a, b) Top views (top panels) and side views (bottom panels) for atomic structures of $H-MoS_2$ (a) and $H-Au_6S_2$ monolayer (b). (c) Perspective view of triangular prism $Au_6(2e)$ cluster. (d) Phonon dispersion of $H-Au_6S_2$ monolayer. Unit cells are denoted with blue lines, and lattice constants are also noted. Mo, S and Au atoms are marked with cyan, red and gold spheres, respectively. $H-Au_6S_2$ monolayer can be derived from corresponding $H-MoS_2$ monolayer by substituting Mo atom with triangular prism Au_6 clusters.

Figure S6. *Ab initio* MD results for G-Au₆S₂ monolayer. Total potential energy as function of MD time were plotted. Snapshot at 2 ps, 4 ps, 6 ps, 8 ps and 10 ps are inserted inside.

Figure S7. Ab initio MD results or $T-Au_6S_2$ monolayer. Total potential energy as function of MD time were plotted. Snapshot at 2 ps, 4 ps, 6 ps, 8 ps and 10 ps are inserted inside.

Figure S8. Computed band structures of $G-Au_6S_2$ (a) and $T-Au_6S_2$ (b) at PBE level. Spin-orbit coupling (SOC) was considered.

Figure S9. Strain effect on the band gap of T-Au₆S₂ monolayer.

Substrate effects on electronic band structure. Graphene is selected as a substrate to form vertical heterostructures with $G-Au_6S_2$ and $T-Au_6S_2$, respectively (Figure S10a and S10b). Projected band structures for heterostructures were plotted in Figure S10c and S10d, demonstrating that the intrinsic electronic structures of predicted Au_6S_2 monolayers are well preserved on substrate. Of course, Fermi levels are shifted due to the possible charge transfer from graphene to G- and T-Au_6S_2.

Figure S10. (a, b) Atomic structures (top and side views) for $G-Au_6S_2$ and $T-Au_6S_2$ monolayer adsorbed on graphene substrate. Gold, red and grey spheres in (a, b) stand for Au, S and C atoms, respectively. **a**₁ and **a**₂ indicate unit cells for heterostructures. (c, d) Projected band structures at PBE level for $G-Au_6S_2$ -graphene (c) and $T-Au_6S_2$ -graphene (d) Heterostructure systems. Red and blue dots in (c, d) represent the weight of Au_6S_2 and graphene, respectively. Fermi levels are set to 0. SOC was not considered here in order to reduce the huge computational cost.

Figure S11. (a) Representative structure of rectangle cell of T-Au₆S₂ monolayer as indicated with blue lines and texts. (b) Sketch for brillouin zone and band structures calculated based on HSE06 functional. Band gap and effective electron/hole masses are noted inside.

Figure S12. Linear fitting of deformation potential. Band energy of the VBMs (a, c) and CBMs (b, d) of Au_6S_2 monolayer with respect to the vacuum energy as a function of lattice dilation. PBE-GGA functional with SOC considered was adopted to compute deformation potential constant for reducing the huge computational cost.

Lattice parameters (a, b, c and α , β , γ ; units are Å and degree) and Cartesian coordinates for structures in Figure S2 and H-Au₆S₂.

G-Au₆S₂ monolayer in Figure S2.

4.4088	5.7457 20.00	000 90.0000 9	90.0000 67.3840
Au001	3.883675960	0.153038005	9.859762800
Au002	1.685229084	3.587876227	7.914511800
Au003	1.678524279	1.291930506	11.057992200
Au004	1.680909399	0.151738114	7.967035800
Au005	3.887618438	3.588919405	9.914360400
Au006	3.885791950	1.295235549	6.772689000
S001	3.882461370	1.991957299	11.670505200
S002	1.681507183	1.993502573	6.156082800

T-Au₆S₂ monolayer in Figure S2.

5.7451	5.7451 2	0.0000	90.0000	90.0000	60.0000
Au1	4.18783319	0.7	05910113	9.02688	80000
Au2	5.57854955	1 1.5	08940085	6.71872	20000
Au3	2.80513125	2 1.5	08790822	6.71232	20000
Au4	2.80122458	3.1	07586677	9.02704	0000
Au5	4.19188349	0 3.9	10616648	6.71872	20000
Au6	5.57458543	2 3.1	07735939	9.03344	0000
S7	1.316173685	5 0.64	9240278	5.116480	0000
S 8	7.063542999	3.96	7385991	10.62928	0000

H-Au₆S₂ monolayer

5.6752	2 5.6752	20.0000	90.0000	90.0000	60.0000
Au1	3.0956856	16 1.80	1158137	8.120350	0800
Au2	5.8112530	81 1.80	1516920	8.120215	5800
Au3	4.4531585	10 4.15	3064419	8.120268	3000
Au4	3.0956723	73 1.80	1117726	10.84282	3800
Au5	5.8112716	19 1.80	1473560	10.84296	2400
Au6	4.45315832	20 4.15	3052514	10.84291	0200
S1	1.61576139	09 0.940	6507843	12.459234	4600
S2	1.61571102	0.940	5511524	6.503954	400

Strcuture (c) in Figure S2.

7.2748	8.5624 20.00	000 90.0000	90.00000 67.0606
Au001	6.980157596	5.315556830	11.397117600
Au002	2.585092485	2.780052374	7.598397600
Au003	4.442672433	6.656655868	12.327129000
Au004	6.230022813	2.855970924	7.458804000
Au005	8.564771656	7.458383946	11.135755800
Au006	6.013763651	7.571446079	10.116460800
Au007	4.662101673	4.359086859	9.874006200
Au008	4.700482234	1.232620282	9.051957000
Au009	2.642060194	2.464805652	10.409166000
Au010	7.829674222	2.887210553	12.095913600
Au011	2.369391591	4.909612325	11.781003600
Au012	7.511441433	0.970769519	9.755899200
S001	0.732654638	1.346292759	7.472775600
S002	7.083520230	0.686070332	12.190116600
S003	4.389996364	4.304023372	7.537213800
S004	4.837324253	4.315699654	12.259983600

Streuture (d) in Figure S2.

7.3009	9.3323 20.00	00 90.0000	90.0000 97.0059
Au001	4.619304180	3.149842567	8.987598000
Au002	1.599090353	6.489223204	8.388307800
Au003	4.050703130	7.780885501	8.989974000
Au004	0.233618770	1.729598473	7.654033800
Au005	-0.339538868	6.359618602	10.324960200
Au006	-0.231256555	4.441424374	8.386021800
Au007	2.169558320	1.857424345	9.592792200
Au008	1.139843595	9.201029769	7.655014800
Au009	-0.798698731	9.072072625	9.591768000
Au010	4.906987069	0.832071821	7.104891600
Au011	4.331985317	5.467306720	10.873274400
Au012	1.704728168	4.568478670	10.325205000
S001	5.137451612	7.739189643	11.125416600
S002	5.707880701	3.105286748	6.852938400
S003	3.533228460	3.193523068	11.123562600
S004	2.964189920	7.822330342	6.854682600

Streuture (e) in Figure S2.

7.1955	8.2625 20.00	90.0000	90.0000	76.2718
Au001	5.403364434	3.679702355	6.9440	31000
Au002	3.960898756	6.154047406	7.4483	85600
Au003	3.195397950	3.399008101	8.7773	74200
Au004	6.307480500	5.999273883	9.0445	41000
Au005	2.240400361	0.758201493	8.0670	88800
Au006	5.545324071	1.130423716	9.3135	40200
Au007	1.561652829	2.039054302	10.437	697800
Au008	1.364304036	4.810513270	10.3372	211000
Au009	8.539455831	6.065988314	7.2795	07800
Au010	2.464989113	7.278097708	9.4843	63800
Au011	4.011795220	5.090367835	10.733	092200
Au012	6.237210565	3.240495004	11.200	721400
S001	6.866032432	0.850292912	11.2795	90200
S002	6.249554122	5.631614505	11.4049	13400
S003	6.311139585	5.794344034	6.55566	64800
S004	4.373414660	1.612496253	7.35043	8600

Strcuture (f) in Figure S2.

6.3247	7.6519 20.00	000 90.0000	90.0000 111.4882
Au001	5.228807482	1.082311904	9.976032449
Au002	1.836229640	3.364237196	6.562151208
Au003	3.945399360	1.826434581	7.695755340
Au004	0.328958166	1.256877708	7.669737134
Au005	-0.232021291	6.108165007	7.696121029
Au006	3.349027739	5.577808906	7.951438710
Au007	-1.705538868	5.681773343	10.319564378
Au008	1.040909225	5.476036271	10.042931753
Au009	-0.632304608	3.599502290	8.850540450
S001	2.689935373	6.389462428	11.466869163
S002	2.206763409	0.998386246	6.237158971
S003	1.729576995	5.628975816	6.283458416

Streuture (g) in Figure S2.

5.6591 8.0220 20.0000 90.0000 90.0000 78.6486 Au001 5.713393155 2.868720492 8.160331200

Au002	4.465781225	5.054574237	7.250646400
Au003	4.402361544	7.859234114	7.715185600
Au004	2.763380472	2.799305677	8.174851200
Au005	1.515471721	4.983559665	7.262448000
Au006	7.231966496	7.858518392	7.713444800
S001	4.248002735	1.207494937	9.221854400
S002	2.980277496	6.646707445	6.205238400

Streuture (h) in Figure S2.

5 .7800	14.8896 20	.0000 90.0000	90.0000 90.0000	
Au001	4.43190618	2 10.315083082	2 7.289450170	
Au002	1.33727915	4 10.313893403	3 7.288336787	
Au003	2.88206493	6 12.284539407	8.399056541	
Au004	-0.00635483	1 12.561293892	2 7.966042323	
Au005	4.37182552	4 0.167299546	8.248526083	
Au006	1.39395969	8 0.166820100	8.249545491	
Au007	1.54532441	5 2.872719020	7.305609292	
Au008	4.23127480	9 2.874691892	7.306628304	
Au009	0.00134351	2 4.842720305	8.418756462	
Au010	2.88880087	1 5.118663306	7.986890641	
Au011	1.48778765	2 7.614724582	8.250170565	
Au012	4.29021545	0 7.614630778	8.249727169	
S001	2.883164739	14.161215658	9.805315610	
S002	2.886610584	8.616842309	6.543848797	
S003	-0.001451828	6.728747224	9.812053930	
S004	-0.004564548	1.181126454	6.550111918	

Strcuture (i) in Figure S2.

8.1161	11.4544 20.0	0000 90.0000	90.0000 90.0000
Au001	-0.000353050	-0.011102750	8.317873601
Au002	4.055491805	11.448053979	8.325946118
Au003	3.489936797	4.360806671	8.576372252
Au004	7.552479059	7.068920926	8.562341379
Au005	2.029831740	1.964842962	8.318673321
Au006	2.021993211	9.331732305	8.296514407
Au007	4.621526475	7.081910420	8.003320783
Au008	6.078357497	4.848521097	8.266428037
Au009	2.029729477	6.586856015	8.281912998

Au010	0.559382714	4.360869875	8.016313257
Au011	6.091162268	2.103696352	8.318788228
Au012	6.082828656	9.473658910	8.305922114
S001	4.076747871	2.046198841	9.567466773
S002	0.010808210	9.383658677	9.548256944
S003	-0.012778799	2.037825960	7.069881459
S004	4.037556847	9.411866001	7.056141461

Strcuture (j) in Figure S2.

6.6657	7.6109 20.00	000 90.0000	90.0000 110.4530	
Au001	5.333558698	3.557770862	8.288390400	
Au002	2.000588658	3.558133835	8.289275200	
Au003	2.844269499	6.533326619	7.956968000	
Au004	1.156040589	0.582778463	8.621542400	
Au005	3.755897160	1.334054347	8.393390400	
Au006	0.244815472	5.781982989	8.188121600	
S001	0.307060273	2.546648923	9.581712000	
S002	3.693765801	4.569661534	6.996438400	

Streuture (k) in Figure S2.

7.5376	12.2533 20.0	000 90.0000	90.0000 90.0000	
Au001	1.303759828	2.569674987	9.130761330	
Au002	6.236200948	9.706348232	9.048338087	
Au003	2.468414002	8.672187130	9.098444022	
Au004	5.063531291	3.556290835	9.115834598	
Au005	7.464184530	4.883815640	8.906568738	
Au006	0.057762890	7.416458086	9.535618678	
Au007	3.824179501	10.962542012	8.619840568	
Au008	3.701927920	1.233627676	9.289724455	
Au009	6.213112526	0.234321873	8.692927550	
Au010	1.354258733	11.993506664	9.355624668	
Au011	2.441981900	5.894009901	9.507461818	
Au012	5.114602300	6.385468747	8.822719197	
S001	6.825391774	2.425960547	7.937018554	
S002	0.703501544	9.855835202	10.262672863	
S003	4.471988734	8.513718737	7.887677493	
S004	3.056228461	3.722752055	10.306516327	

Strcuture (l) in Figure S2.

2.8321	4.8758 20.00	000 90.0000	90.0000	90.0000
Au001	2.528224450	1.226827166	6.4159	88538
Au002	1.118157261	1.288652408	9.1064	79832
Au003	1.111680248	3.666747309	6.4113	46866
S001	1.118687147	3.729006399	9.70394	3662