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1. Force field validation 

	

Molecular dynamics simulations were performed with the Generalized Amber Force Field (GAFF) and the 

software NAMD. The dihedral angle between the tetracene and phenyl moieties was parameterized against 

DFT calculations at PBE0/def2-TZVP level carried out on phenyltetracene using Orca 3.03. The force field 

was then validated simulating a bulk rubrene crystal supercell. The initial coordinates and lattice parameters 

were taken from ref.12. In more detail, a first MD simulation run in the NPT ensemble was carried out for 

10 ns at 300 K, followed by relaxation of 20 ns in the NVT ensemble. The average values extracted from the 

simulation are reported in Table S1. 

 

Table S1 Comparison between experimental density and unit cell axes and MD simulation results obtained 

for a 4×2×1 bulk rubrene supercell at 300 K. Unit cell angles were held fixed to the experimental value of 

90 degrees. 

 
a (Å) b (Å) c (Å) Density (g/cm3) 

Experiment 7.17 14.43 26.81 1.27 

Simulation (300 K) 7.32 14.15 27.12 1.26 

% Difference 2.0 -2.1 1.1 -0.7 

	

2. Mechanical properties 

A supercell consisting of 256 molecules, with PBC, was equilibrated at constant pressure for 10 ns, then at 

constant volume for 2 ns. The supercell and the intermolecular distances were then rescaled in order to 

compress/expand the cell along a-, b- or c-axis and then a final MD run was carried out for 10 ns at constant 

volume, while recording the pressure profile along the three sides of the box.  

Stress (σ) and strain (ε) are related by the stiffness tensor C:	𝜎!" = 𝐶!"#$! 𝜀!"! , where the indices i, j, k, l 

run over the Cartesian axes, here coincident with the lattice unit vectors a, b, c. In the absence of shear strain, 

and by adopting Voigt’s notation, it is possible to reduce the stiffness tensor to a symmetric 3 by 3 matrix, 

𝜎!! = 𝐶!"! 𝜀!!, so that only six independent elements can be identified. 

Two different sets of MD simulations were performed under two different assumptions, represented in 

Figure 1b. First, a uniaxial strain was imposed, meaning only one lattice constant of the crystal was rescaled, 

while the other two were kept constant. The strains to the crystal lattice were imposed by simultaneously 

modifying one of the supercell box sides and the intermolecular distances along one cell vector k while 
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leaving the other directions unaltered (“uniaxial strain” conditions), with values ranging from -0.4% to 

+0.4% in steps of 0.1%. Stress values 𝜎!! were recorded as the average pressure exerted on three faces of the 

simulation box.  

The three corresponding stress-strain equations for the a, b and c directions become: 
𝜎!!
𝜎!!
𝜎!!

= 𝐶
𝜀!!
0
0

;   
𝜎!!
𝜎!!
𝜎!!

= 𝐶
0
𝜀!!
0

;   
𝜎!!
𝜎!!
𝜎!!

= 𝐶
0
0
𝜀!!

   (S1) 

  

The stiffness tensor elements were computed by fitting each stress-uniaxial strain plot (Figure S1, top) with a 

line having intercept at (0,0). The angular coefficients of the stress calculated along the direction of strain 

correspond to the three diagonal elements Cii of the tensor. Off-diagonal elements were derived in a similar 

fashion, but taking into account the symmetry of the tensor by averaging 𝐶!" and 𝐶!". For instance, 𝐶!" is 

calculated as 𝜎!!/𝜀!!  from the simulation where the strain is applied along a, and correspondingly 

𝐶!" = 𝜎!!/𝜀!! when strain is applied along b. 

Afterwards, the originally non-rescaled sides of each simulation box were then rescaled according to 

Equation S2, using the calculated stiffness tensor elements to remove the residual off-diagonal strain, thus 

achieving uniaxial stress conditions. MD simulations of 10 ns were carried out in the NVT ensemble, from 

which a second series of stress-strain curves was obtained. The uniaxial stress condition implies rescaling the 

other two lattice vectors previously kept constant in the simulations with uniaxial strain. The three stress-

strain systems of equations become thus: 
𝜀!!
𝜀!!
𝜀!!

= 𝐶!!
𝜎!!
0
0

;   
𝜀!!
𝜀!!
𝜀!!

= 𝐶!!
0
𝜎!!
0

;   
𝜀!!
𝜀!!
𝜀!!

= 𝐶!!
0
0
𝜎!!

;  (S2) 

where 𝜎!! values were chosen to match the corresponding 𝜀!! for the case of uniaxial strain (i.e. for uniaxial 

stress along a, 𝜎!!  was set to values yielding to 𝜀!!=-0.4%, -0.3%, …, +0.4%, etc.). The trajectories 

obtained from the two MD series were employed to assess the influence of strain along a, b or c on i) 

intermolecular degrees of freedom, such as distances and angles, and ii) electronic couplings between 

rubrene nearest neighbours. The applied strain values and the corresponding cell vectors are summarized in 

Table S2. The stress-strain curves, calculated for uniaxial stress conditions, are shown in Figure S1 bottom. 

The correctness of the procedure adopted for the calculations of the stiffness tensor is also shown by the 

almost flat lines in each plot, corresponding to off-diagonal contributions that were set to zero by imposing a 

strain calculated from the stiffness tensor.  

The Poisson’s ratios υij can be calculated from the strain tensor elements, which can be rewritten as: 

 𝐶!! =

!
!!

− !!"
!!

− !!"
!!

− !!"
!!

!
!!

− !!"
!!

− !!"
!!

− !!"
!!

!
!!

  (S3) 
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The Poisson ratio elements of rubrene derived from the results of our MD simulations are reported in Table 

S3, together with their equivalents calculated from the data in ref. 39. The higher magnitude of vab and vba 

clearly denotes the high inter-dependency in the strain behaviour existing within the ab crystal plane.  

 

Table S2 Summary of applied strain and the corresponding stress values (in GPa) along the three cell axes, 

together with the dimensions of the unit cell (Å), for uniaxial stress simulations. 

ε % σaa a b c σbb a b c σcc a b c 

0.4 -0.036 7.348 14.100 27.128 -0.021 7.304 14.206 27.095 -0.049 7.323 14.122 27.226 

0.3 -0.027 7.341 14.113 27.125 -0.016 7.308 14.192 27.100 -0.036 7.322 14.129 27.200 

0.2 -0.018 7.334 14.125 27.123 -0.011 7.311 14.178 27.106 -0.024 7.321 14.136 27.172 

0.1 0.010 7.326 14.137 27.120 -0.006 7.315 14.164 27.112 -0.012 7.320 14.143 27.144 

-0.1 0.010 7.311 14.162 27.115 0.006 7.323 14.136 27.123 0.012 7.318 14.157 27.092 

-0.2 0.018 7.304 14.174 27.112 0.011 7.326 14.121 27.129 0.024 7.317 14.164 27.064 

-0.3 0.027 7.297 14.187 27.110 0.016 7.330 14.107 27.135 0.036 7.316 14.171 27.036 

-0.4 0.036 7.290 14.199 27.107 0.021 7.333 14.093 27.140 0.049 7.315 14.177 27.008 

 

Table S3 Calculated and experimental Poisson ratios and Young moduli (GPa) for rubrene. 

 
calculated, this work calculated39 experimental40 calculated40 

νba 0.87 0.82 0.60 0.71 

νab 0.49 0.60 0.51 0.57 

νac -0.12 -0.06 -0.16 0.20 

νca -0.09 -0.04 -0.10 0.08 

νbc 0.48 0.21 0.62 0.33 

νcb 0.21 0.09 0.34 0.11 

Ea 8.92 9.02 9.01 8.89 

Eb 5.12 6.06 7.07 7.14 

Ec 11.86 15.17 14.10 21.65 
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Figure S1 a) plots of applied strain and the corresponding stress values (in GPa) along the three cell axes, 

for simulations performed at uniaxial strain. b) plots of applied strain and the corresponding stress values 

(in GPa) along the three cell axes, for simulations performed at uniaxial stress. 

3. Analysis of the intermolecular degrees of freedom 

In the attempt of rationalizing the strain-induced variation of the electronic couplings J between the nearest 

neighbours along the a cell vector, relevant intermolecular degrees of freedom were characterized as a 

function of strain for 1000 snapshot taken from MD simulations along a, b or c, in both uniaxial strain and 

uniaxial stress conditions. Those included the lateral shift of one molecule along one of its three axes (as 

shown in Figure S3, Figure S4, Figure S5), and the rotation of one molecule with respect to its three 

symmetry axes (see Figure S6). In addition, the transfer integral of a dimer taken from the crystallographic 

structure was calculated while varying the above-mentioned intermolecular coordinates. The comparison 

between the trends allowed thus to assess the relative importance of each coordinate with respect to the 

transfer integral variation upon strain. 

As far as the rotation angles are concerned, it is shown from Figure S6b and c that, despite a certain 

dependence of angles θ and χ from strain in the case of uniaxial strain can be found, the absolute variations 

is always of the order of 10-2 degrees. The most sensitive angle with respect to the transfer integral variation 

is χ, but while J increases with χ, χ increases with positive strain, which in turn was found to decrease J.  

Instead, transfer integral shows a monotonic decrease with increasing φ and θ, although only θ increases 

slightly with positive strain in the case of uniaxial strain. This brings us to the conclusion that there is not a 

specific intermolecular mode that can be held solely responsible for the observed variation of mobility with 

strain. 
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Figure S2 Normalized standard deviations of |ra|, |rb| and |rc| for a) uniaxial strain and b) uniaxial stress 

simulations. 

	
Figure S3 Projection of the interneighbour distance ra along the three axes as a function of strain	
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Figure S4 Projection of the interneighbour distance rb along the three axes as a function of strain. 
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Figure S5 Projection of the interneighbour distance rc along the three axes as a function of strain. 
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Figure S6 a) Visual representation of φ, θ and χ. The rotation direction with respect to the symmetry axes 

(dashed lines) is shown by the black arrows. b) Variation of Ja as a function of φ, θ and χ, calculated from a 

dimer extracted from the crystal unit cell in the absence of strain. c) Variation of φ, θ and χ as a function of 

strain, extracted from MD simulations.	
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Table S4 Average values of Ja and Jb transfer integrals calculated with ORCA and the projection method at 
different levels of theory, for simulations with uniaxial mechanical strain applied along b. Corresponding 
relative linear and quadratic variations with respect to the unperturbed single crystal are also given. DFT 
and Z stand for B3LYP/6-31G* and ZINDO calculations at the MD geometries. OPT-Z stands for ZINDO 
calculations on AM1-optimized geometries in which bond lengths and angles were relaxed. Calculations at 
zero strain with the ADF suite yield Ja=0.0881 using the B3LYP functional and the DZ basis set.  

𝜀!! % quantity a, DFT a, Z a, OPT-Z  b, DFT b, Z b, OPT-Z 
-0.40 transfer 

integral Ji 
(eV) 

0.1059 0.0969 0.0968 0.0161 0.0109 0.0109 
0.00 0.1036 0.0936 0.0935 0.0157 0.0105 0.0105 
0.40 0.1012 0.0904 0.0902 0.0153 0.0101 0.0101 

-0.40 relative 
variation 

(Ji-Ji0)/Ji0 % 

2.28 3.50 3.52 2.68 3.88 3.80 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.40 -2.27 -3.50 -3.49 -2.40 -3.63 -3.70 

-0.40 relative 
square 

variation 
(Ji

2- Ji0
2)/Ji0

2 % 

4.61 7.12 7.17 5.43 7.91 7.75 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.40 -4.50 -6.88 -6.86 -4.73 -7.13 -7.26 

 

4. Distribution of transfer integrals calculated from selected MD snapshots 

To derive the shape of the distribution of electronic coupling, which reflects the distribution of 

intermolecular degrees of freedom, a total of 34 300 ps-spaced frames from the 10 ns simulation time were 

extracted and electronic couplings were calculated for every dimer in the simulation supercell along a, b and 

c. They are hereby called |𝐽!! |, |𝐽!! | and |𝐽!!| in order to distinguish them from the electronic couplings 

calculated from a single averaged configuration reported in the main discussion of this work). Due to the 

huge number of calculations required, the cheap and cost-effective ZINDO Hamiltonian was used in all the 

calculations. The comparison with DFT values reported in Table S4 indicate that ZINDO captures both the 

correct order of magnitude of the couplings and of their variation upon strain, with respect to more expensive 

DFT calculations, and that the underestimation of C=C bond length alternation typical of the GAFF force 

field is unimportant for what concerns the transfer integral calculation. 

The distributions of the electronic couplings at different strain values (0, +0.4% and -0.4% along a, b and c 

are reported for MD simulations performed in both uniaxial stress and strain conditions, respectively in 

Figure S7 and Figure S8Additional data about the distributions for the whole strain interval analysed in this 

work are also reported in Table S4. The distributions have a slightly skewed Gaussian shape, whose standard 

deviation remains mostly unchanged upon positive or negative strain. The changes in the maximum and 

average |𝐽!! |, |𝐽!! | and |𝐽!!| reflect the trends already observed in Figure 2 and commented in the main text of 

this article. 
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Figure S7 Normalized distributions of the instantaneous values of the transfer integrals a) |𝐽!! |, b) |𝐽!! | and  

c) |𝐽!!| calculated for ε=0 (black line), +0.4% (blue line) and -0.4% (red line), in uniaxial stress conditions. 

From left to right, strain is applied along a, b, and c, respectively. 
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Figure S8 Normalized distributions of the instantaneous values of the transfer integrals a) |𝐽!! |, b) |𝐽!! | and  

c) |𝐽!!| calculated for ε=0 (black line), +0.4% (blue line) and -0.4% (red line), in uniaxial strain conditions. 

From left to right, strain is applied along a, b, and c, respectively. 

 

5. Strain and mobilities along c. 

Hole mobilities were evaluated using a hopping model, where ∆𝜇!
!  is found to be proportional to the square 

of the transfer integral 𝐽!! (see Equation 5 in the article). The variation of mobility along c, hard to measure 

experimentally, appears to be the most sensitive when compression/tension along c is applied (Figure S9). 

∆𝜇!!   in this case reaches 60% and follows the expected decreasing trend with strain, as reflected by the large 

m values in Table 2. In case of deformation along a and b, the mobility measured along c is less perturbed, 

and in particular it hardly changes upon a stress applied along a. This is clearly related to the corresponding 

Poisson ratios: since vcb and vca are relatively small, deformations along a and b are not expected to produce 

large effects on the arrangement of rubrene molecules along the out-of plane direction c. We note that our 
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results for the mobilities along c may be partial because only one type of neighbour along c was considered 

(see reference43 for details). 

The effect of a c strain on the mobility along b has the expected decreasing trend with a response very 

similar to the one to the stress along b. We predict instead for mobilities along a an increase with tensile 

strain applied along c, in particular for uniaxial stress conditions, and the same trend for mobility measured 

along c upon stress application along a (Figure S9ac and ca), in accord with the negative Poisson’s ratios νac 

and νca. 

	
Figure S9 Calculated relative mobility variations ∆𝜇!!  as a function of strain magnitude and direction, 

calculated along the a (top), b (middle), and c (bottom panels) crystal axes. Insets: variation of 

intermolecular distances |ra|, |rb|, |rc| between dimers along the same direction of the calculated mobility 

variation, as a function of strain. Error bars were estimated as the difference between the mobility parallel 

to the cell vectors and with a misalignment of 5°.  
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Table S5 Calculated mean <Jt>, ratio <Jt2>/<Jt>2, standard deviation σ, parameter η=<Jt>/σ, skewness 
and kurtosis of the distributions of electronic couplings shown in Figure S7 and Figure S8. 

Uniaxial strain      
% ε <Jt> <Jt2>/<Jt>2 σ η  Skewness Kurtosis 

0 94.233 1.084 27.368 3.443 0.507 0.373 
% εaa       -0.4 97.256 1.086 28.528 3.409 0.582 0.667 
-0.3 95.696 1.084 27.757 3.448 0.512 0.391 
-0.2 96.419 1.084 27.899 3.456 0.570 0.395 
-0.1 94.071 1.087 27.782 3.386 0.521 0.419 
0.1 93.408 1.088 27.771 3.364 0.494 0.168 
0.2 93.000 1.089 27.787 3.347 0.538 0.220 
0.3 92.351 1.087 27.297 3.383 0.488 0.279 
0.4 91.489 1.086 26.850 3.407 0.493 0.032 

% εbb       
-0.4 96.842 1.081 27.549 3.515 0.514 0.434 
-0.3 96.092 1.084 27.874 3.447 0.555 0.563 
-0.2 94.981 1.082 27.168 3.496 0.438 0.010 
-0.1 95.206 1.080 26.964 3.531 0.400 0.042 
0.1 92.794 1.091 28.034 3.310 0.608 0.669 
0.2 93.965 1.088 27.800 3.380 0.519 0.343 
0.3 91.830 1.095 28.303 3.244 0.513 0.309 
0.4 91.329 1.094 28.023 3.259 0.589 0.852 

% εcc       
-0.4 92.247 1.090 27.649 3.409 0.500 0.222 
-0.3 93.498 1.092 28.357 3.448 0.599 0.506 
-0.2 94.195 1.089 28.035 3.456 0.555 0.359 
-0.1 94.298 1.086 27.599 3.386 0.492 0.329 
0.1 94.407 1.087 27.809 3.364 0.499 0.287 
0.2 94.795 1.085 27.638 3.347 0.505 0.253 
0.3 94.534 1.089 28.237 3.383 0.605 0.558 
0.4 94.943 1.089 28.364 3.407 0.599 0.486 

       % ε <Jb
t> <Jb

t2>/<Jb
t>2 σ η Skewness Kurtosis 

0 10.059 1.257 5.098 1.973 0.754 1.104 
% εaa       -0.4 10.193 1.257 5.164 1.974 0.661 0.570 
-0.3 10.188 1.272 5.317 1.916 0.709 0.835 
-0.2 10.101 1.264 5.191 1.946 0.760 1.066 
-0.1 10.135 1.254 5.106 1.985 0.767 1.038 
0.1 10.015 1.268 5.186 1.931 0.756 1.016 
0.2 10.048 1.261 5.130 1.959 0.763 0.978 
0.3 9.855 1.271 5.132 1.920 0.735 0.828 
0.4 9.765 1.272 5.093 1.917 0.623 0.417 

% εbb       -0.4 10.421 1.250 5.212 1.999 0.742 1.248 
-0.3 10.281 1.260 5.242 1.961 0.645 0.564 
-0.2 10.268 1.262 5.251 1.955 0.701 0.913 
-0.1 10.044 1.264 5.157 1.948 0.664 0.572 
0.1 9.956 1.262 5.099 1.952 0.648 0.648 
0.2 9.741 1.265 5.019 1.941 0.609 0.300 
0.3 9.707 1.268 5.029 1.930 0.721 0.839 
0.4 9.692 1.287 5.194 1.866 0.763 0.984 
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% εcc       -0.4 10.167 1.259 5.179 1.974 0.665 0.636 
-0.3 10.052 1.260 5.125 1.916 0.642 0.460 
-0.2 9.969 1.264 5.119 1.946 0.711 0.828 
-0.1 10.063 1.263 5.157 1.985 0.744 1.030 
0.1 10.034 1.265 5.165 1.931 0.680 0.782 
0.2 10.004 1.263 5.130 1.959 0.708 0.738 
0.3 10.049 1.262 5.149 1.920 0.686 0.783 
0.4 9.876 1.266 5.089 1.917 0.760 0.909 

       % ε <Jc
t> <Jc

t2>/<Jc
t>2 σ η Skewness Kurtosis 

0 0.658 1.595 0.433 1.519 0.507 0.373 
% εaa       -0.4 0.632 1.433 0.415 1.521 1.063 1.798 
-0.3 0.648 1.404 0.412 1.574 0.865 1.370 
-0.2 0.654 1.401 0.414 1.579 0.822 0.806 
-0.1 0.653 1.398 0.412 1.586 0.873 1.032 
0.1 0.658 1.393 0.413 1.596 0.833 0.795 
0.2 0.658 1.421 0.427 1.542 1.004 1.677 
0.3 0.657 1.389 0.410 1.604 0.769 0.514 
0.4 0.645 1.440 0.428 1.507 0.969 1.087 

% εbb        -0.4 0.672 1.392 0.421 1.598 0.884 1.098 
-0.3 0.647 1.394 0.406 1.594 0.964 1.856 
-0.2 0.661 1.382 0.409 1.617 0.823 0.634 
-0.1 0.663 1.412 0.425 1.558 0.998 1.597 
0.1 0.638 1.400 0.403 1.581 0.808 0.685 
0.2 0.659 1.404 0.418 1.574 0.869 0.934 
0.3 0.650 1.411 0.417 1.560 0.920 1.164 
0.4 0.650 1.437 0.430 1.512 1.042 1.664 

% εcc       -0.4 0.746 1.340 0.435 1.521 0.827 1.182 
-0.3 0.706 1.393 0.443 1.574 0.934 0.916 
-0.2 0.693 1.384 0.430 1.579 0.897 1.530 
-0.1 0.674 1.410 0.432 1.586 0.932 1.114 
0.1 0.639 1.412 0.410 1.596 0.837 0.711 
0.2 0.617 1.428 0.404 1.542 0.975 1.346 
0.3 0.602 1.440 0.399 1.604 1.007 1.596 
0.4 0.585 1.434 0.385 1.507 0.911 1.138 

      
Uniaxial stress      

% ε <Ja
t> <Ja

t2>/<Ja
t>2 σ η Skewness Kurtosis 

0 94.233 1.084 27.368 3.443 0.507 0.373 
% εaa       -0.4 92.719 1.088 27.483 3.409 0.493 0.338 
-0.3 94.624 1.084 27.370 3.448 0.468 0.143 
-0.2 93.538 1.085 27.287 3.456 0.452 0.068 
-0.1 95.322 1.087 28.161 3.386 0.612 0.584 
0.1 93.556 1.085 27.258 3.364 0.470 0.136 
0.2 93.752 1.088 27.853 3.347 0.615 0.633 
0.3 94.687 1.089 28.178 3.383 0.513 0.287 
0.4 95.056 1.091 28.629 3.407 0.485 0.374 
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% εbb       
-0.4 95.935 1.084 27.862 3.409 0.592 0.647 
-0.3 96.010 1.087 28.288 3.448 0.471 0.085 
-0.2 95.663 1.088 28.434 3.456 0.534 0.431 
-0.1 94.576 1.084 27.346 3.386 0.470 0.279 
0.1 93.732 1.090 28.128 3.364 0.574 0.627 
0.2 92.380 1.088 27.435 3.347 0.448 0.164 
0.3 92.408 1.087 27.215 3.383 0.515 0.271 
0.4 92.082 1.089 27.418 3.407 0.483 0.250 

% εcc       
-0.4 92.588 1.093 28.274 3.409 0.616 0.479 
-0.3 93.040 1.086 27.339 3.448 0.488 0.263 
-0.2 93.117 1.090 27.908 3.456 0.552 0.428 
-0.1 93.428 1.084 27.003 3.386 0.467 0.044 
0.1 94.756 1.085 27.650 3.364 0.486 0.215 
0.2 95.321 1.086 27.883 3.347 0.495 0.348 
0.3 95.723 1.088 28.406 3.383 0.515 0.239 
0.4 96.576 1.088 28.696 3.407 0.532 0.475 

       % ε <Jb
t> <Jb

t2>/<Jb
t>2 σ η Skewness Kurtosis 

0 10.059 1.257 5.098 1.973 0.754 1.104 
% εaa       -0.4 9.859 1.272 5.139 1.974 0.695 0.538 
-0.3 9.894 1.282 5.252 1.916 0.692 0.678 
-0.2 9.956 1.272 5.192 1.946 0.734 0.798 
-0.1 9.837 1.270 5.109 1.985 0.752 1.079 
0.1 9.955 1.259 5.070 1.931 0.683 0.712 
0.2 10.155 1.260 5.182 1.959 0.759 1.014 
0.3 10.042 1.278 5.292 1.920 0.764 0.957 
0.4 10.044 1.265 5.170 1.917 0.789 1.388 

% εbb       -0.4 10.216 1.249 5.098 1.974 0.647 0.548 
-0.3 10.130 1.252 5.090 1.916 0.678 0.700 
-0.2 10.096 1.266 5.212 1.946 0.709 0.850 
-0.1 10.109 1.263 5.182 1.985 0.714 0.681 
0.1 10.074 1.277 5.303 1.931 0.852 1.460 
0.2 9.879 1.283 5.251 1.959 0.742 0.750 
0.3 9.891 1.271 5.151 1.920 0.809 1.160 
0.4 9.697 1.265 4.991 1.917 0.625 0.403 

% εcc       -0.4 9.926 1.266 5.118 1.974 0.663 0.488 
-0.3 9.998 1.276 5.255 1.916 0.772 0.831 
-0.2 10.022 1.274 5.247 1.946 0.714 0.885 
-0.1 10.010 1.257 5.074 1.985 0.687 0.764 
0.1 10.070 1.260 5.133 1.931 0.708 0.947 
0.2 10.070 1.265 5.186 1.959 0.721 0.912 
0.3 10.077 1.266 5.198 1.920 0.808 1.224 
0.4 10.050 1.263 5.153 1.917 0.743 1.045 
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% ε <Jc
t> <Jc

t2>/<Jc
t>2 σ η Skewness Kurtosis 

0 0.658 1.595 0.433 1.519 0.507 0.373 
% εaa       -0.4 0.649 1.407 0.414 1.521 0.880 1.157 
-0.3 0.654 1.415 0.421 1.574 0.878 0.951 
-0.2 0.662 1.426 0.432 1.579 1.112 2.514 
-0.1 0.652 1.400 0.413 1.586 0.867 1.115 
0.1 0.669 1.413 0.430 1.596 1.026 1.762 
0.2 0.646 1.404 0.411 1.542 1.014 1.615 
0.3 0.665 1.389 0.415 1.604 0.865 0.787 
0.4 0.663 1.378 0.408 1.507 0.826 0.944 

% εbb       -0.4 0.629 1.409 0.402 1.521 0.862 0.997 
-0.3 0.640 1.417 0.413 1.574 0.879 0.788 
-0.2 0.630 1.433 0.414 1.579 1.046 1.749 
-0.1 0.643 1.429 0.421 1.586 0.960 1.223 
0.1 0.657 1.406 0.419 1.596 0.861 0.727 
0.2 0.660 1.415 0.425 1.542 1.011 2.093 
0.3 0.663 1.403 0.421 1.604 0.914 0.976 
0.4 0.661 1.405 0.421 1.507 0.934 1.156 

% εcc       -0.4 0.727 1.365 0.439 1.521 0.779 0.595 
-0.3 0.702 1.375 0.430 1.574 0.898 1.210 
-0.2 0.694 1.390 0.434 1.579 1.035 1.870 
-0.1 0.681 1.378 0.418 1.586 0.836 0.968 
0.1 0.625 1.439 0.414 1.596 0.961 1.423 
0.2 0.612 1.462 0.416 1.542 0.941 1.195 
0.3 0.603 1.437 0.399 1.604 0.864 0.878 
0.4 0.584 1.440 0.387 1.507 0.951 1.103 

 

	
Figure S10 Photograph of a rubrene crystal laminated horizontally on top of a cantilever. It can be seen that 

how the the crystal is placed near the clamped part of the triangular cantilever in order to obtain a uniaxial 

strain.	
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Figure S11 Pictures of the cantilever taken at different tensile strains. The cantilever is the white line in the 

middle of the picture. The dark shape on the right side of the images is the micromanipulator tip, which 

applies the force at the free end of the cantilever. The rubrene crystal is laminated on the top of the 

cantilever, very close to its left end (clamped part in Figure S10).	
	

	
Figure S12  Transfer curves of the rubrene at rest and under a maximal strain of 0.16% at Vds = -50 V. 
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6. Relation between the relative variations of drain current and mobility 

The drain current measured in transistor operating in linear regime (for Vds<Vgs-Vth) can be described by the 

following equation: 

𝐼!(!"#) = 𝜇𝐶 !
!

𝑉!" − 𝑉!! 𝑉!" −
!!"
!

!
 (S4) 

For transistor operating in saturation regime (Vd >Vgs-Vth) we have instead: 

𝐼! !"# = !
!
𝜇𝐶 !

!
𝑉!" − 𝑉!!

!  (S5) 

At fixed source-drain and gate-source voltages, and if the threshold voltage does not change with the applied 

stress, the first-order relative variation of drain current in both regimes can be written as: 

 ∆!
!
= ∆!

!
 + ∆!

!
− ∆!

!
+ ∆!

!
   (S6) 

where I is the drain current, W and L are respectively the width and the length of the transistor channel, C the 

capacitance and µ the charge mobility. 

 

For both configurations (electrodes placed in the cantilever length direction or in the cantilever width 

direction), variations of W and L can be neglected. In fact, in the former case, the variation of L will be zero 

and the variations of W small with respect to measured variations of mobility (the variation of W is indeed 

the strain, which is of the order of 0.2% while mobility changes are of the order of 10%). For the second case 

(electrodes in the cantilever width direction), ∆W will be zero and ∆L small (corresponding to the applied 

strain). We are then left with: 
∆!
!
= ∆!

!
+ ∆!

!
    (S7) 

Analogously, the relative variation of the capacitance can be written as: 
∆!
!
= ∆!

!
+ ∆!

!
+ ∆!

!
− ∆!

!
   (S8) 

with β and d, respectively, the permittivity and thickness of the dielectric. Since permittivity and thickness 

do not change upon strain, and geometrical variations ∆w and ∆L can be neglected as explained before, we 

end up with: 
∆!
!
≈ 0     (S9) 

Finally, combining equations S7-S10 it emerges how the main variation of drift current upon application of 

strain, reflects a variation of mobility:  ∆!
!
= ∆!

!
    (S10). 


