Supporting Information

Co/CoP Embedded in Hairy Nitrogen-Doped Carbon Polyhedron as an

Advanced Tri-functional Electrocatalyst

Yongchao Hao^{a, b, c}, Yuqi Xu^{a, c}, Wen Liu^{a, c*}, Xiaoming Sun^{a, d*}

a. State Key Laboratory of Chemical Resource Engineering, Beijing University of

Chemical Technology, Beijing, 100029, China.

b. School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China

- c. Faculty of science, Beijing University of Chemical Technology
- d. Beijing Advanced Innovation Centre for Soft Matter Science and Engineering,

College of Energy, Beijing University of Chemical Technology

*Authors to whom correspondence should be addressed: wenliu@mail.buct.edu.cn; sunxm@mail.buct.edu.cn

Fig. S1 The SEM images and corresponding TEM images of ZIF-67 (a, c) and Co-HNC pre (b, d).

Fig. S2 The XRD spectra of (a) ZIF-67 and (b) Co-HNC pre.

Fig. S3 The SEM images and their corresponding TEM images of Co/CoP-NC (a, c), Co-HNC (b, d).

Fig. S4 The EDS mapping of Co/CoP-HNC.

Fig. S5 The ORR evaluation for (a) Co/CoP-HNC with different pyrolysis temperature and (b) Co/CoP-HNC, Co-HNC pre, Co-HNC.

Fig. S6 The CV plots of (a) Co/CoP-HNC, (b) Co-HNC and (c) Co/CoP-NC with different scan rates.

Fig. S7 (a) The OER performance of Co/CoP-HNC on GC in 0.1 M KOH. (b) A bubble was observed on GC after 400 s under a constant potential of 1.56 V.

Fig. S8 The EIS spectra of Co/CoP-HNC, Co-HNC and Co/CoP-NC for (a) OER and (b) HER. The performance of Co/CoP-HNC with different pyrolysis temperature for (c) OER and (d) HER.

Catalysts	Loading mg/cm ²	E _{ORR} /V half-wave	E _{OER} /V 10 mA/cm ²	ΔΕ/ν	Ref.
Co/CoP-HNC	0.19	0.83	1.62	0.79	This work
NC@Co-NGC	0.4	0.82	1.64	0.82	Ref. 1
PFSA-Fe _{3.5} Ni	~0.37	0.83	1.64	0.81	Ref. 2
S,S'-CNT _{1000 °C}	0.23	0.79	1.58	0.79	Ref. 3 (1 M KOH)
NiO/CoN PINWs	0.2	0.68	1.55	0.87	Ref. 4
Co@Co ₃ O ₄ /NC-1	0.21	0.8	1.65	0.85	Ref. 5
N/Co-doped PCP//NRGO	0.714	0.86		0.80	Ref. 6
	0.357		1.66	0.80	
Co-CoO/N-rGO	0.21	0.78	1.62	0.84	Ref. 7
FeNO-CNT-CNFF	0.4	0.87	1.66	0.79	Ref. 8
N-GCNT/FeCo-3	0.2	0.92	1.73	0.81	Ref. 9
N-PC@G-0.02	~0.41	0.80	1.63	0.83	Ref. 10
NiCo ₂ S ₄ /N-CNT	0.248	0.80	1.60	0.80	Ref. 11
S,N-Fe/N/C-CNT	0.6	0.85	1.60	0.75	Ref. 12
A-PBCCF-H	~0.25	0.76	1.64	0.88	Ref. 13
Pb ₂ Ru ₂ O _{6.5} /KB	0.637	0.81	> 1.6	> 0.79	Ref. 14
N, S-doped porous carbon	0.42	0.88	1.69	0.81	Ref. 15

 Table S1 Summary of state of the art bifunctional oxygen electrocatalysts in 0.1 M KOH.

Catalysts	Loading mg/cm ²	E _{OER} /V 10 mA/cm ²	E _{HER} /V 10 mA/cm ²	Ref.	
Co/CoP-HNC	0.2	1.53 V	-0.18 V	This work	
Co-P/NC	0.283	1.574	-0.191 V	Ref. 16	
Cu _{0.3} Co _{2.7} P/NC	0.4	1.42 V	-0.22 V	Ref. 17	
	1	1.49 V			
CoO _x @CN	0.42		-0.232 V	Ref. 18	
Co/CoP-5	0.22	1.57 V	-0.253 V	Ref. 19	
Fe/P/C	0.46	1.56 V	-0.256 V	Ref. 20	
VOOH	0.8	1.50 V	-0.164 V	Ref. 21	
N, S-CNT	-	1.59 V	< -0.4 V	Ref. 22	
SNCF-NR	0.46	1.60 V	-0.232 V	Ref. 23	
CoMoS₄/β-Co(OH)₂	1	1.572 V	-0.143 V	Ref. 24	
CoP-2ph-CMP-800	0.14	1.60 V	-0.36 V	Ref. 25	
CoS-Co(OH) ₂	0.2	1.61 V	-0.143 V	Ref. 26	
Ni ₅ P ₄	0.15 V		-0.15 V	D.(27	
NiOOH/Ni₅P₄		1.52 V		Ret. 27	

 Table S2
 Summary of state of the art bifunctional electrocatalyst in 1 M KOH for water splitting.

References

- [1] S. Liu. Z. Wang, S. Zhou, F. Yu, C. Y. Chiang, W. Zhou, J. Zhao, J. Qiu, Adv. Mater. 2017, 1700874.
- [2] H. Wu, J. Wang, G. Wang, F. Cai, Y. Ye, Q, Jiang, S. Sun, S. Miao, X. Bao, Nano Energy 2016, 30, 801-809.
- [3] A. M. El-Sawy, I. M. Mosa, D. Su, C. J. Guild, S. Khalid, R. Joesten, J. F. Rusling, S. L. Suib, Adv. Energy Mater.
 2016, 6, 1501966.

- [4] J. Yin, Y. Li, F. Lv, Q. Fan, Y. Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi, S. Guo, ACS Nano 2017, 11, 2275–2283.
- [5] A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W. Schuhmann, M. Muhler, Angew.
 Chem. Int. Ed. 2016, 55, 4087 –4091.
- [6] Y. Hou, Z. Wen, S. Cui, S. Ci, S. Mao, J. Chen, Adv. Funct. Mater., 2015, 25, 872–882.
- [7] X. Liu. W. Liu, M. Ko, M. Park, M. G. Kim, P. Oh, S. Chae, S. Park, A. Casimir, G. Wu, J. Cho, Adv. Funct. Mater., 2015, 25, 5799–5808.
- [8] D. Ji, S. Peng, D. Safanama, H. Yu, L. Li, G. Yang, X. Qin, M. Srinivasan, S. Adams, S. Ramakrishna, Chem. Mater., 2017, 29, 1665–1675.
- [9] C. Y. Su, H. Cheng, W. Li, Z. Q. Liu, N. Li, Z. Hou, F. Q. Bai, H. X. Zhang, T. Y. Ma, Adv. Energy Mater., 2017, 7, 1602420.
- [10] S. Liu, H. Zhang, Q. Zhao, X. Zhang, R. Liu, X. Ge, G. Wang, H. Zhao, W. Cai, Carbon, 2016, 106, 74-83.
- [11] X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, W. Hu, Nano Energy, 2017, 31, 541–550.
- [12] P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed., 2017, 56, 610–614.
- [13] B. Hua. M. Li, Y. F. Sun, Y. Q. Zhang, N. Yan, J. Chen, T. Thundat, J.Li, J. L. Luo, Nano Energy, 2017, 32, 247– 254.
- [14] J. Park, M. Risch, G. Nam, M. Park, T. J. Shin, S. Park, M. G. Kim, Y. Shao-Horn, J. Cho, Energy Environ. Sci., 2017, 10, 129–136.
- [15] Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang, M. Zhu, Z. Wang, C. Zhi, Energy Environ. Sci., 2017, 10, 742--749.
- [16] B. You, N. Jiang, M. Sheng, S. Gul, J.Yano, Y. Sun, Chem. Mater., 2015, 27, 7636–7642.
- [17] J. Song, C. Zhu, B. Z. Xu, S. Fu, M. H. Engelhard, R. Ye, D. Du, S. P. Beckman, Y. Lin, Adv. Energy Mater., 2017, 7, 1601555.
- [18] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688–2694.
- [19] Z. H. Xue, H. Su, Q. Y. Yu, B. Zhang, H. H. Wang. X. H. Li, J. S. Chen, Adv. Energy Mater., 2017, 7, 1602355.
- [20] M. Li, T. Liu, X. Bo, M. Zhou, L. Guo, S. Guo, Nano Energy, 2017, 33, 221–228.
- [21] H. Shi, H. Liang, F. Ming, Z. Wang, Angew. Chem. Int. Ed., 2017, 56, 573–577.
- [22] K. Qu, Y. Zheng, Y. Jiao, X. Zhang, S. Dai, S. Z. Qiao, Adv. Energy Mater., 2017, 7, 1602068.
- [23] Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu, Z. Shao, Adv. Energy Mater., 2017, 7, 1602122.
- [24] Y. Sun, C.Wang, T. Ding, J. Zuo, Q. Yang, Nanoscale, 2016, 8, 18887–18892.

- [25] H. Jia, Y. Yao, Y. Gao, D. Lu, P. Du, Chem. Commun., 2016, 52, 13483--13486.
- [26] T. Yoon, K. S. Kim, Adv. Funct. Mater. 2016, 26, 7386–7393.
- [27] M. Ledendecker, S. Krick Calderón, C. Papp, H. P. Steinrück, M. Antonietti, M. Shalom, Angew. Chem. Int. Ed. 2015, 54, 12361–12365.