Electronic Supporting Information

General oriented assembly of uniform carbon-confined metal oxide nanodots

on graphene for stable and ultrafast lithium storage

Jiashen Meng ^a, Ziang Liu ^a, Chaojiang Niu ^{a,*}, Linhan Xu ^b, Xuanpeng Wang ^a, Qi Li ^a, Xiujuan Wei ^a, Wei Yang ^a, Lei Huang ^a, Liqiang Mai ^{a,c,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

^{b.}Department of Physics and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, China.

^{c.}Department of Chemistry, University of California, Berkeley, California 94720, United States

*Email: mlq518@whut.edu.cn; niuchaojiang11@whut.edu.cn

Experimental Section

Synthesis of C@SnO₂@Gr

The GO was synthesized through a modified Hummer method. The solvothermal process was used to synthesize the Sn-precursor@GO with the as-prepared GO suspension (~1 mg mL⁻¹). SnCl₂ (0.30 g), poly(vinylpyrrolidone) (PVP, K30, 0.10 g) and 1,4-dicarboxybenzene (0.12 g) were successively dissolved in 25 mL of N, N-dimethylformamide (DMF) solvent under stirring. The resulting mixture was stirred for another 1 h at room temperature. 10 mL of as-prepared GO suspension was added into the former mixture and stirred for another 1 h. The obtained

solution was transferred to a 50-mL Teflon autoclave and then heated to 160 °C for 12 h. Then, the Sn-precursor@GO was collected, washed with methanol three times and freeze-dried. Subsequently, after complete pyrolysis at 500 °C (Ramp rate: 2 °C min⁻¹) for 3 h in argon, the C@SnO₂@Gr was obtained.

Synthesis of SnO₂@C

SnCl₂ (0.30 g), PVP (K30, 0.10 g) and 1,4-dicarboxybenzene (0.12 g) were successively dissolved in 25 mL of DMF solvent under stirring. The resulting mixture was stirred for another 1 h at room temperature. Then, the Sn-precursor was collected, washed with methanol three times and freeze-dried. Subsequently, after complete pyrolysis at 500 °C (Ramp rate: 2 °C min⁻¹) for 3 h in argon, the SnO₂@C was obtained.

Synthesis of NC@SnO₂@Gr

SnCl₂ (0.30 g), PVP (K30, 0.10 g) and 2-methylimidazole (0.5 g) were successively dissolved in 25 mL of DMF under stirring. The resulting mixture was stirred for another 1 h at room temperature. 10 mL of as-prepared GO suspension was added into the former mixture and stirred for another 1 h. The obtained solution was transferred to a 50-mL Teflon autoclave and then heated to 160 °C for 12 h. Then, the Sn-precursor@GO was collected, washed with methanol three times and freeze-dried. Subsequently, after complete pyrolysis at 500 °C (Ramp rate: 2 °C min⁻¹) for 3 h in argon, the NC@SnO₂@Gr was obtained.

Synthesis of C@Cr₂O₃@Gr

 $CrCl_3 \cdot 6H_2O$ (0.50 g), PVP (K30, 0.10 g) and 1,4-dicarboxybenzene (0.2 g) were successively dissolved in 25 mL of DMF under stirring. The resulting mixture was stirred for another 1 h at room temperature. 10 mL of as-prepared GO suspension was added into the former mixture and stirred for another 1 h. The obtained solution was transferred to a 50-mL Teflon autoclave and then heated to 160 °C for 12 h. Then, the Cr-precursor@GO was collected, washed with

2

methanol three times and freeze-dried. Subsequently, after complete pyrolysis at 500 °C (Ramp rate: 2 °C min⁻¹) for 3 h in argon, the C@Cr₂O₃@Gr was obtained.

Synthesis of NC@Fe₃O₄@Gr

Ferric acetylacetonate (0.30 g), PVP (K30, 0.10 g) and 2-methylimidazole (0.5 g) were successively dissolved in 25 mL of DMF under stirring. The resulting mixture was stirred for another 1 h at room temperature. 10 mL of as-prepared GO suspension was added into the former mixture and stirred for another 1 h. The obtained solution was transferred to a 50-mL Teflon autoclave and then heated to 160 °C for 12 h. Then, the Fe-precursor@GO was collected, washed with methanol three times and freeze-dried. Subsequently, after complete pyrolysis at 500 °C (Ramp rate: 2 °C min⁻¹) for 3 h in argon, the NC@Fe₃O₄@Gr was obtained.

Synthesis of NC@Al₂O₃@Gr

AlCl₃·6H₂O (0.30 g), PVP (K30, 0.10 g) and 2-methylimidazole (0.5 g) were successively dissolved in 25 mL of DMF under stirring. The resulting mixture was stirred for another 1 h at room temperature. 10 mL of as-prepared GO suspension was added into the former mixture and stirred for another 1 h. The obtained solution was transferred to a 50-mL Teflon autoclave and then heated to 180 °C for 12 h. Then, the Al-precursor@GO was collected, washed with methanol three times and freeze-dried. Subsequently, after complete pyrolysis at 500 °C (Ramp rate: 2 °C min⁻¹) for 3 h in argon, the NC@Al₂O₃@Gr was obtained.

Characterizations

The crystallographic characteristics of the final products were measured using a Bruker D8 Discover X-ray diffractometer equipped with a Cu Kα radiation source. SEM images were collected using a JEOL-7100F scanning electron microscope, and TEM images were collected using a JEM-2100F transmission electron microscope. Energy-dispersive X-ray spectra were recorded using an Oxford IE250 system. Raman and FTIR spectra were obtained using a

3

Renishaw INVIA micro-Raman spectroscopy system. The BET surface area was calculated from nitrogen adsorption isotherms collected at 77 K using a Tristar-3020 instrument. TG-DSC analysis was conducted using an STA-449F3 instrument. All solid-state NMR measurements were carried out on a 9.4 T Bruker Avance III HD NMR spectrometer equipped with a 4 mm HXY triple-resonance MAS probe at ¹H Larmor frequency of 400.13 MHz with the X and Y channels tuned to ¹³C at 100.63 MHz. All NMR spectra were obtained with CP at MAS frequencies of 12 kHz for ¹³C.

Computational details

All simulations on metal-organic frameworks were based on density functional theory (DFT) and carried out by using the projector augmented wave method (PAW) as implemented in the Vienna *ab initio* simulation package (VASP). The exchange and correlation functional was treated as generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) formula. The wave functions were expanded by using the plane waves up to a kinetic energy cutoff of 500 eV. Brillouin-zone integrations were approximated by using special *k*-point sampling of Monkhorst-Pack scheme with a *k*-point mesh resolution of $2\pi * 0.03 \text{ Å}^{-1}$. The unit cell lattice vectors (unit cell shape and size) and atomic coordinates were fully relaxed until the force on each atom was less than 0.02 eV Å⁻¹.

Lithium storage measurements

The anode electrodes were composed of 80 wt% C@SnO₂@Gr, 10 wt% acetylene black, and 10 wt% carboxymethyl cellulose (CMC) binder, forming a stable homogenous ink. After coating onto copper foil, the electrode film was uniformly cut into ~ 0.5 cm² (area) round slices, weighing a total of ~ 1.2 mg; the corresponding areal mass loading was 2.4 mg cm⁻². 2,016 coin cells were assembled in a glovebox filled with pure argon gas. Lithium foil was used as the counter electrode and the separator was Celgard 2400 microporous membrane. 1 M lithium

hexafluorophosphate (LiPF₆) solution in ethylene carbon (EC)-dimethyl carbonate (DMC) (1:1 v/v) was used as the electrolyte. The amount of electrolyte in a cell is 150 μ l. Galvanostatic charge-discharge measurements were performed using a multichannel battery testing system (LAND CT2001A). CVs and electrochemical impedance spectra were collected at room temperature using an Autolab potentiostat/galvanostat.

Fig. S1 FTIR spectra of PVP, GO and PVP-modified GO samples.

Fig. S2 (a-c) SEM images and (d-f) TEM images of Sn-precursor@GO.

Fig. S3 (a) FTIR spectra of 1,4-dicarboxybenzene and Sn-precursor@GO. (b) Raman spectra of GO, Sn-precursor@GO and C@SnO₂@Gr. (c) The corresponding I_G/I_D ratios. (d, e) TG-DTG-DSC curves of C@SnO₂@Gr. (e) N₂ adsorption-desorption isotherms of C@SnO₂@Gr. (f) The corresponding pore size distribution.

Fig. S4 (a, b) SEM images and (c) XRD pattern of SnO nanoparticles with the addition of 10 ml H_2O and without graphene oxide and 1,4-dicarboxybenzene into the reaction system. (d, e) SEM images and (f) XRD pattern of SnO/graphene oxide composite without 1,4-dicarboxybenzene into the reaction system.

Fig. S5 Rietveld refinement analysis of C@SnO₂@Gr sample from XRD data.

Fig. S6 (a-c) SEM images and (d-f) TEM images of C@SnO₂@Gr.

Fig. S7 (a, b) HRTEM images of C@SnO₂@Gr. The yellow circles represent SnO₂ nanodots, which are surrounded by carbon layers.

Fig. S8 (a, b) SEM and TEM image of the Sn-precursor. (c) XPS and high-resolution Sn 3d XPS spectra of the Sn-precursor.

Fig. S9 (a) Optical image of Sn-precursor and SnO₂@C. (b, c) SEM images of SnO₂@C. (d) XRD pattern of SnO₂@C. (e-g) TEM images of SnO₂@C. (h) TG-DTG-DSC curves of SnO₂@C. (i-l) EDX mapping images of SnO₂@C, including the C, O and Sn elements.

Fig. S10¹³C cross-polarization (CP) magic angle spinning (MAS) solid-state NMR spectra of Snprecursor (red line), Zn-MOF-5 (blue line) and 1,4-dicarboxybenzene (black line), respectively.

Fig. S11 (a) Crystal structure of Zn-MOF-5. (b) XRD pattern of as-prepared Zn-MOF-5 crystals.

(c) SEM image of Zn-MOF-5 crystals. (d) EDX mapping images of Zn-MOF-5 crystals.

Fig. S12 SEM images (a, b), TEM image (c), XRD pattern (d) and EDX mapping images (e-i) (C, O, N and Sn elements) of the Sn-precursor@GO. XRD pattern (j), SEM images (k, I), TEM images (m-o) and HRTEM images (p, q) of the NC@SnO₂@Gr.

Fig. S13 SEM images (a), TEM images (b, c), XRD pattern (d) and EDX mapping images (e-h) (C, O and Cr elements) of the Cr-precursor@GO. XRD pattern (i), SEM images (j, k), TEM images (l-n) and HRTEM images (o, p) of the C@Cr₂O₃@Gr.

Fig. S14 SEM images (a-c), XRD pattern (d) and EDX mapping images (e-i) (C, O, N and Fe elements) of the Fe-precursor@GO. XRD pattern (j), SEM images (k, l), TEM images (m-o) and HRTEM images (p, q) of the NC@Fe₃O₄@Gr.

Fig. S15 SEM images (a-c), XRD pattern (d) and EDX mapping images (e-i) (C, O, N and Al elements) of the Al-precursor@GO. XRD pattern (j), SEM images (k, l), TEM images (m-o) and HRTEM images (p, q) of the NC@Al₂O₃@Gr.

Fig. S16 (a) SEM image of SnO₂@NC nanoparticles. (b-f) EDX mapping images, including Sn, O, C and N elements.

Fig. S17 (a) SEM image of $Fe_3O_4@NC$ nanoparticles. (b-f) EDX mapping images, including Fe, O, C and N elements.

Fig. S18 (a) SEM image of Al₂O₃@NC nanoparticles. (b-f) EDX mapping images, including Al, O, C and N elements.

Fig. S19 (a, b) SEM images and (c) XRD pattern of ZIF67.

Fig. S20 (a, b) SEM images and (c) TEM image of the Sn-precursor@GO with a small amount of graphene oxides. (d, e) SEM images and (f) TEM image of the Sn-precursor@GO without the addition of PVP.

Fig. S21 (a, b) TEM image and (c) HRTEM image of C@SnO₂@Gr after 120 cycles at the current

density of 0.2 A g $^{\text{-1}}$. Inset of (b) is the SAED pattern.

Fig. S22 (a) The initial discharge and charge process of the C@SnO₂@Gr electrode. Different color points represent different lithiation/delithiation stages. (b) The corresponding ex situ XRD patterns.

Fig. S23 (a) CV curves of the C@SnO₂@Gr at various scan rates ranging from 0.2 to 4 mV s⁻¹. (b) Determination of the b-value using the relationship between peak current and scan rate (b= ~0.86). (c, d) Separation of the capacitive and diffusion currents at scan rates of 0.2 and 1mV s⁻¹, respectively. (e) Contribution ratio of the capacitive and diffusion-controlled charge versus scan rate. (f) The Nyquist plots of the C@SnO₂@Gr , C@SnO₂/Gr and SnO₂@C samples at the first cycle.

Fig. S24 Lithium storage performances of NC@Fe₃O₄@Gr. (a) The first three CV curves tested at a scan rate of 0.2 mV s⁻¹. (b) Rate performance tested at current densities varying from 0.1, 0.2, 0.5, 1, 2, 5, 10 back to 0.5 A g⁻¹. (c) Cycling performance and coulombic efficiency tested at a high current density of 2 A g⁻¹.

Table 51. Comparisons of crystal structures between 2n mor 5 and 5n precu	SOL HOIL DE	• 1
calculations		

Crystal structures Bond angles						Distortion	
			index				
Sn-based							
tetrahedron 2	95.9	90.6	103.2	86.5	78.3	155.5	26.5
(O-Sn-O)							
Zn-based							
tetrahedron 2	106.6	114.5	106.6	112.4	109.2	107.1	3.0
(O-Zn-O)							

Sn-based							
tetrahedron 4	90.0	101.7	53.9	83.6	134.7	86.9	29.8
(O-Sn-O)							
Zn-based							
Zn-based tetrahedron 4	107.3	113.1	111.6	107.3	111.0	106.2	2.6
Zn-based tetrahedron 4 (O-Zn-O)	107.3	113.1	111.6	107.3	111.0	106.2	2.6

Table S2.	A comparison	n of our work and	d current main	synthetic methods for	or graphene-

metal/metal oxides h	ybrid materials.
----------------------	------------------

Methods	Reaction principles	Products	Advantages	Disadvantages	References
Solvothermal synthesis	Mismatched coordination reaction	C@SnO2@Gr NC@ SnO2@Gr NC@Cr2O3@Gr NC@Fe3O4@Gr NC@Al2O3@Gr	 Simple manipulation Easy control Low cost General synthesis Carbon confined structure Uniform products 		Our work
Hydrothermal synthesis	Redox reaction	SnO₂/Gr	• Simple manipulation • Low cost	 Hard to obtain uniform products Hard to extend many metal oxides 	<i>Small</i> 2016 , <i>12</i> , 588-594.
Elctrostatic self-assembly	Electrostatic interaction	Si/Gr	 Simple manipulation Low cost 	 High demands for selected nanoparticles Weak interactions Hard to 	Adv. Mater. 2015 , 27, 1526-1532.

Rapid thermal shock process	High temperature	Si/Gr Sn/Gr Al/Gr	 Fast fabrication General synthesis 	obtain uniform morphologies • High temperature • High cost • Relatively complex manipulation	Nano Lett. 2016 , 16, 5553-5558.
High-power light irradiation approach	Strong light	Pt/Gr Mn₃O₄/Gr CoO/Gr Fe₂O₃/Gr NiO/Gr	 Simple manipulation General synthesis 	 High-power light High cost Relatively complex device 	Adv. Mater. 2016 , 28, 3305-3312.

Table S3. The comparisons of our work and previous reports on different nanostructured SnO₂

for LIBs.

	Voltage	Current		Residual	Capacity	
			Cycle			
Morphology	range	density	number	capacity	retentio	Reference
	(V)	(mA g ⁻¹)	number	(mAh g ⁻¹)	n	
Carbon confined						
Carbon-confined		200	120	1090	104.5%	
SnO ₂ nanodots on	0.01-3					Our work
		2000	1200	702	112%	
graphene						
Double-shelled SnO ₂						
volk shall						
york-shell-	0.01-3	625	40	642	91%	Ref. 39
nanostructured			-	-		
microspheres						
merospheres						
SnO₂@carbon						
coaxial hollow	0.01-3	500	100	460	79%	Ref. 43
spheres						
SnO ₂ quantum dots						
	0.01-3	2000	2000	553	86%	Ref. 25
on graphene oxide						

Carbon-coated SnO ₂						
nanoplates						
assembled	0.01-2.5	200	50	700	80%	Ref. 22
hierarchical tubular						
structures						
Confined ultrasmall						
SnO_2 particles in	0.01-1.5	1400	2000	443	48%	Ref. 42
porous	0.01 1.0	2.00			1070	
carbon						
Ordered						
interconnected SnO ₂	0.01-1.5	1562	100	431	74%	Ref. 37
nanoparticles						
N-doped carbon-						
coated SnO ₂	0.01-3	500	100	491	52%	Ref. 44
submicroboxes						
SnO ₂						
submicrocubes@C	0.01-3	50	120	871	72%	Ref. 40
yolk–shell structure						
SnO ₂ @TiO ₂ wire-in-	0.01-3	400	1000	495	56%	Ref. 38
tube nanostructure	0.01 0		1000		20/0	