Electronic supplementary information

# Room Temperature Control of Spin States in a Thin Film of a Photochromic Iron(II) Complex

Lorenzo Poggini,<sup>\*[a,b]</sup> Magdalena Milek,<sup>[c]</sup> Giacomo Londi,<sup>[a]</sup> Ahmad Naim,<sup>[b]</sup> Giordano Poneti,<sup>[a]</sup> Lorenzo Squillantini, <sup>[a]</sup>Agnese Magnani, <sup>[d]</sup> Federico Totti,<sup>[a]</sup> Patrick Rosa,<sup>[b]</sup> Marat M. Khusniyarov,<sup>\*[c]</sup> Matteo Mannini<sup>\*[a]</sup>

a) Department of Chemistry "Ugo Schiff" and INSTM Research Unit of Firenze, University of Firenze, I-50019 Sesto Fiorentino, Italy E-mail: matteo.mannini@unifi.it b) Univ. Bordeaux, ICMCB, , CNRS, UMR 5026, F-33600 Pessac, France E-mail: lorenzo.poggini@icmcb.cnrs.fr c) Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstr. 1, 91058, Erlangen, Germany. E-mail: marat.khusniyarov@fau.de d) Department of Biotechnologies, Chemistry and Pharmacy, INSTM Research Unit of Siena, Via A. Moro 2, 53100 Siena, Italy "Present address: Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, nº 149, 21941-909, Rio de Janeiro, Brazil

#### S1. Additional ToF-SIMS characterization

|                                            | Theoretical<br>(m/z) | Evaporated<br>(m/z.) | Intensity | Bulk (m/: | z) Intensity |
|--------------------------------------------|----------------------|----------------------|-----------|-----------|--------------|
| [M-pz]⁺                                    | 683.19               | 683.1                | vw        | 683.1     | W            |
| [M-Bpz] <sup>+</sup>                       | 669.17               | 669.11               | w         | 669.11    | S            |
| [M-B(pz) <sub>2</sub> ]*                   | 603.13               | 603.08 s             |           | 603.08    | S            |
| [M- B(pz) <sub>2</sub> - Bpz] <sup>+</sup> | 523.07               | 523.02               | S         | 523.02    | S            |
| [M-2B(pz) <sub>2</sub> ]                   | 457.05               | 457.06               | m         | 457.01    | m            |
| [M-2B(pz) <sub>2</sub> _Fe] <sup>+</sup>   | 401.11               | 401.12               | m         | 401.09    | m            |

Table S1. Summary of ToF-SIMS peaks expected and experimentally found for bulk and evaporated sample.

pz = *H*-pyrazole

Bpz = 1-boryl-1H-pyrazole  $B(pz)_2 = di(1H$ -pyrazol-1-yl)borane

S2. AFM Characterization

Morphological analysis has been carried out with a NT-MDT Solver P47pro Scanning Probe Microscope (NT-MDT, Zelenograd, Moscow, Russia; <u>www.ntmdt.ru</u>) equipped with NGS01 NT-MDT. The image analysis has been carried out with Gwyddion software. <sup>S1</sup> AFM images were taken in tapping mode in air. The estimated thickness was about 16.8 nm, and the measured one it's about 15 nm (Fig. S1a). A nominal 5nm molecular film on Au (111) it's shown in Fig. S2b). Imaging showed a nice defect-free SCO deposit without the presence of pin-hole on the surface.



**Figure S1.** a) AFM image (25X25  $\mu$ m) of patterned molecular film obtained via shadow masking technique on SiO<sub>x</sub> surface; b) image (15X15  $\mu$ m) of molecular film on Au(111), c) Topography profile of patterned molecular film along a the red line in figure a); d) topography profile of molecular film on Au (111) along the red line in b).

### S3. Magnetic characterization of the sublimated film



**Figure S2.** [a] Temperature dependence of the  $\chi_M T$  product for a 200 nm film of **1** before (empty black dots and empty red dots), during (empty red triangles) and after (full red dots) 532 nm laser light irradiation at 10 K; [b] Temperature dependence of the  $\chi_M T$  product for a polycrystalline sample of **1**.



**Figure S3**. [a] Temperature dependence of the  $\chi_{M}T$  product for a 200 nm film of **1**, before (full dots) and after (empty dots and fading grey lozenges) UV irradiation ( $\lambda$  = 282 nm); [b] Reversibility of the optically induced SCO interconversion (LIESST effect,  $\lambda$  = 532 nm) at low temperature for a 200 nm film of **1**.

#### S4. Additional XPS-UPS characterization

| Table S2. | . Theoretical | and XPS estimate | ed atomic perce | ntages and ra | atios for a SCO | thin film (5.3 nm) | evaporated |
|-----------|---------------|------------------|-----------------|---------------|-----------------|--------------------|------------|
| on Au(11  | 1).           |                  |                 |               |                 |                    |            |

|          | Fe <i>2p</i> | N 15 | S 2p | B 1s | C 1s |
|----------|--------------|------|------|------|------|
| Exp. %   | 1.8          | 18.7 | 3.0  | 3.8  | 72.7 |
| Theor. % | 1.5          | 15.5 | 3.1  | 3.1  | 76.9 |



|      | 300 K |                        | 150 K |                        | 300 K |                        | 150 K |                        | 300 K |                        |
|------|-------|------------------------|-------|------------------------|-------|------------------------|-------|------------------------|-------|------------------------|
|      | %     | B.E<br>(∆E S.O. )      |
| A+A' | 5.10  | 709.26 eV<br>(12.4 eV) | 24.90 | 709.24 eV<br>(12.4)    | 4.80  | 709.20 eV<br>(12.4 eV) | 22.60 | 709.25 eV<br>(12.4 eV) | 4.91  | 709.12 eV<br>(12.4 eV) |
| B+B' | 46.70 | 710.51 eV<br>(13.4 eV) | 32.60 | 710.30 eV<br>(13.4 eV) | 47.40 | 710.30 eV<br>(13.4 eV) | 35.20 | 710.30 eV<br>(13.4 eV) | 47.2  | 710.30 eV<br>(13.4 eV) |
| C+C' | 20.20 | 712.88 eV<br>(13.4 eV) | 18.30 | 712.31 eV<br>(13.4 eV) | 19.90 | 712.72 eV<br>(13.4 eV) | 19.80 | 712.49 eV<br>(13.4 eV) | 19.9  | 712.80 eV<br>(13.4 eV) |
| D+D' | 19.10 | 715.94 eV<br>(13.4eV)  | 14.80 | 715.60 eV<br>(13.4 eV) | 18.10 | 715.86 eV<br>(13.4 eV) | 14.10 | 715.81 eV<br>(13.4 eV) | 16.9  | 715.9 eV<br>(13.4 eV)  |
| E+E' | 8.90  | 718.43 eV<br>(13.4 eV) | 9.40  | 718.30 eV<br>(13.4 eV) | 9.80  | 718.44 eV<br>(13.4 eV) | 8.30  | 718.3 eV<br>(13.4 eV)  | 11.1  | 712.45 eV<br>(13.4 eV) |

Figure S4. a) Additional reversible temperature switching of 1 complex in a 5.3 nm thick film in the Fe2p region; b) Percentage of green component in function of the number of thermal cycles; Table with the percentage of all the component of the fitting procedure.



Figure S5. UPS spectra from -18 eV to 1 eV (E-E<sub>F</sub>) at R.T from 0.7 nm to 5.3 nm in nominal thickness of 1.

## S5. Calculated TDOS



Figure S6. TDOS for parallel and antiparallel conformers in HS and LS states.

## References

S1 David Nečas, Petr Klapetek, Gwyddion: an open-source software for SPM data analysis, *Cent. Eur. J. Phys.* **10**(1) (2012) 181-188