# Analogues of desferrioxamine B designed to attenuate iron-mediated neurodegeneration: Synthesis, characterisation and activity in the MPTP-mouse model of Parkinson's disease

Michael P. Gotsbacher, Thomas J. Telfer, Paul K. Witting, Kay L. Double, David I. Finkelstein, and Rachel Codd\*

# **Supporting Information**

#### **List of Figures**

| Figure 1: Antiradical activity of <b>1–9</b> and standards as determined by the ABTS <sup>++</sup> assay | 2  |
|----------------------------------------------------------------------------------------------------------|----|
| Figure 2: Complete time for <b>1</b> , <b>2</b> or <b>9</b> in the Pole test                             | 3  |
| Figure 3: <sup>1</sup> H-NMR spectrum for compound <b>2</b>                                              | 4  |
| Figure 4: <sup>13</sup> C-NMR spectrum for compound <b>2</b>                                             | 4  |
| Figure 5: <sup>1</sup> H-NMR spectrum for compound <b>5</b>                                              | 5  |
| Figure 6: <sup>13</sup> C-NMR spectrum for compound <b>5</b>                                             | 5  |
| Figure 7: <sup>1</sup> H-NMR spectrum for compound <b>6</b>                                              | 6  |
| Figure 8: <sup>13</sup> C-NMR spectrum for compound <b>6</b>                                             | 6  |
| Figure 9: <sup>1</sup> H-NMR spectrum for compound <b>7</b>                                              | 7  |
| Figure 10: <sup>13</sup> C-NMR spectrum for compound <b>7</b>                                            | 7  |
| Figure 11: Numbered structure and <sup>1</sup> H-NMR spectrum for compound <b>8</b>                      | 8  |
| Figure 12: <sup>13</sup> C-NMR spectrum for compound <b>8</b>                                            | 8  |
| Figure 13: <sup>1</sup> H-NMR spectrum for compound <b>9</b>                                             | 9  |
| Figure 14: <sup>13</sup> C-NMR spectrum for compound <b>9</b>                                            | 9  |
| Figure 15: High resolution mass spectrometry (ESI+) for compound 2                                       | 10 |
| Figure 16: High resolution mass spectrometry (ESI+) for compound <b>3</b>                                | 10 |
| Figure 17: High resolution mass spectrometry (ESI+) for compound 4                                       | 11 |
| Figure 18: High resolution mass spectrometry (ESI+) for compound 5                                       | 11 |
| Figure 19: High resolution mass spectrometry (ESI+) for compound 6                                       | 12 |
| Figure 20: High resolution mass spectrometry (ESI+) for compound 7                                       | 12 |
| Figure 21: High resolution mass spectrometry (ESI+) for compound 8                                       | 13 |
| Figure 22: High resolution mass spectrometry (ESI+) for compound <b>9</b>                                | 13 |



Figure 1: Antiradical activity as determined by the ABTS<sup>++</sup> assay. Panel a) (*rac*)-TLX (full square), (*R*)-TLX (left semi-filled square), (*S*)-TLX (right semi-filled square); panel b) DFOB (full circle), AH<sub>2</sub> (closed upwards triangle), EDA (closed downwards triangle); panel c) conjugates 2-5 (respective numbers); panel d) conjugates 6-9 (respective numbers).



Figure 2: Treatment with **2** or **9** did not significantly improve complete time in the pole test following MPTP-intoxication. Data is presented as average time  $\pm$  SEM and *t*-test with Welch correction.

## NMR $({}^{1}H, {}^{13}C)$ spectra for compounds 2 and 5–9

NMR (<sup>1</sup>H, <sup>13</sup>C) spectra were recorded in 5 mm Pyrex tubes, using a Varian 400-MR NMR spectrometer at a frequency of 399.73 MHz (<sup>1</sup>H) or 100.52 MHz (<sup>13</sup>C) at 24 °C operated with VnmrJ 3.1 software. The spectral data are reported in ppm ( $\delta$ ) and referenced to residual solvent (DMSO- $d_6$ 2.50/39.52 ppm).



Figure 3: <sup>1</sup>H-NMR spectrum (DMSO-*d*<sub>6</sub>, 400 MHz) for compound 2



Figure 4: <sup>13</sup>C-NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) for compound 2



Figure 5: <sup>1</sup>H-NMR spectrum (DMSO-*d*<sub>6</sub>, 400 MHz) for compound **5** 



Figure 6: <sup>13</sup>C-NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) for compound **5** 



Figure 7: <sup>1</sup>H-NMR spectrum (DMSO-*d*<sub>6</sub>, 400 MHz) for compound **6** 



Figure 8: <sup>13</sup>C-NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) for compound **6** 



Figure 9: <sup>1</sup>H-NMR spectrum (DMSO-*d*<sub>6</sub>, 400 MHz) for compound **7** 



Figure 10: <sup>13</sup>C-NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) for compound **7** 



Figure 11: Numbered structure and <sup>1</sup>H-NMR spectrum (DMSO-*d*<sub>6</sub>, 400 MHz) for compound **8** 



Figure 12: <sup>13</sup>C-NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) for compound **8** 



Figure 13: <sup>1</sup>H-NMR spectrum (DMSO-*d*<sub>6</sub>, 400 MHz) for compound **9** 



Figure 14: <sup>13</sup>C-NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) for compound **9** 

### High resolution mass spectrometry spectra for compounds 2–9



Figure 15: High resolution mass spectrometry (ESI+) for compound **2** found m/z 815.45264 ([M+Na]<sup>+</sup>], C<sub>39</sub>H<sub>64</sub>N<sub>6</sub>O<sub>11</sub>Na requires 815.45308.



Figure 16: High resolution mass spectrometry (ESI+) for compound **3** found m/z 815.45306 ([M+Na]<sup>+</sup>], C<sub>39</sub>H<sub>64</sub>N<sub>6</sub>O<sub>11</sub>Na requires 815.45308.



Figure 17: High resolution mass spectrometry (ESI+) for compound **4** found m/z 815.45256 ([M+Na]<sup>+</sup>], C<sub>39</sub>H<sub>64</sub>N<sub>6</sub>O<sub>11</sub>Na requires 815.45308.



Figure 18: High resolution mass spectrometry (ESI+) for compound **5** found m/z 843.48393 ([M+Na]<sup>+</sup>], C<sub>41</sub>H<sub>68</sub>N<sub>6</sub>O<sub>11</sub>Na requires 843.48438.



Figure 19: High resolution mass spectrometry (ESI+) for compound **6** found m/z 829.46865 ([M+Na]<sup>+</sup>], C<sub>40</sub>H<sub>66</sub>N<sub>6</sub>O<sub>11</sub>Na requires 829.46873.



Figure 20: High resolution mass spectrometry (ESI+) for compound **7** found m/z 815.45294 ([M+Na]<sup>+</sup>], C<sub>39</sub>H<sub>64</sub>N<sub>6</sub>O<sub>11</sub>Na requires 815.45308.



Figure 21: High resolution mass spectrometry (ESI+) for compound **8** found m/z 783.40121 ([M+Na]<sup>+</sup>], C<sub>36</sub>H<sub>56</sub>N<sub>8</sub>O<sub>10</sub>Na requires 783.40171.



Figure 22: High resolution mass spectrometry (ESI+) for compound **9** found m/z 773.47780 ([M+Na]<sup>+</sup>], C<sub>38</sub>H<sub>66</sub>N<sub>6</sub>O<sub>9</sub>Na requires 773.4789.