Supplementary Information for

Human Calprotectin Affects the Redox Speciation of Iron

Toshiki G. Nakashige and Elizabeth M. Nolan*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

*Corresponding author: Inolan@mit.edu

Phone: 617-452-2495

Fax: 617-324-0505

This Supplementary Information includes:

Supplementary Tables	S3
Table S1. Nomenclature of Human Calprotectin (CP) Variants	S3
Table S2. Metal Analysis of Bacterial Growth Media	S3
Table S3. Fe Dissociation Constants and Reduction Potentials of Fe Chelators	S3
Supplementary Figures	S4
Fig. S1. Metal-Depletion of Tris:TSB by CP-Ser	S4
Fig. S2. Metal-Depletion of Tris:TSB by ∆His₃Asp	S4
Fig. S3. Metal-Depletion of Tris:TSB by ∆His₄	S5
Fig. S4. Iron Depletion of Bacterial Growth Media (Tris:BHI and Tris:LB)	S5
Fig. S5. Schematic Cartoon of the Ferrozine Assay Quantifying Fe(II) and Fe(III)	S6
Fig. S6. Optical Absorption spectra of DP Incubated in Medium and Buffer Solutions	S6
Fig. S7. Chemical Structures of Siderophores Employed in this Work	S7
Supplementary References	S8

Protein	S100A8 Mutation(s)	S100A9 Mutation(s)
CP	N/A	N/A
CP-Ser	C42S	C3S
CP-Ser ∆His₃Asp	C42S, H83A, H87A	C3S, H20A, D30A
CP-Ser ∆His₄	C42S, H17A, H27A	C3S, H91A, H95A
CP-Ser $\Delta\Delta$	C42S, H17A, H27A, H83A, H87A	C3S, H20A, D30A, H91A, H95A
CP-Ser-AAA	C42S	C3S, H103A, H104A, H105A

Table S1. Nomenclature of Human Calprotectin Variants

Table S2. Metal Analysis of Bacterial Growth Media ^a

		Concentration (µM)	
Element	TSB ^b	BHI °	LB ^d
Mg	684 ± 67	157 ± 49	1190 ± 90
Ca	332 ± 15	231 ± 12	337 ± 12
Mn	0.566 ± 0.040	0.818 ± 0.61	0.893 ± 0.043
Fe	13.8 ± 1.0	11.7 ± 1.6	14.5 ± 0.8
Со	0.175 ± 0.016	0.366 ± 0.087	0.923 ± 0.051
Ni	0.843 ± 0.121	0.227 ± 0.144	0.442 ± 0.401
Cu	0.366 ± 0.028	0.419 ± 0.131	1.14 ± 0.08
Zn	19.2 ± 1.0	24.0 ± 2.4	41.4 ± 1.5

^a Four independent media preparations were analyzed (mean \pm SDM, n = 4). ^b Tryptic soy broth. ^c Blood heart infusion medium.

Table	S3.	Fe	Dissociation	Constant	and	Reduction	Potential	Values	of	Small-Molecule
Chelate	ors ^a									

Chelator	$\mathbf{K}_{d,Fe(III)}\left(M ight)$	Κ _{d,Fe(II)} (M)	<i>E</i> ° (V vs. SHE)	References	
Ent	10 ⁻⁴⁹	10 ⁻²²	-0.75	1, 2, 3	
DFO	10 ⁻³¹	10 ⁻⁹	-0.48	4, 5	
EDTA	10 ⁻²⁶	10 ⁻¹⁵	+0.12	6	
DP	_	10 ⁻¹⁸	+0.82	7, 8, 9, 10	
Phen	_	10 ⁻²⁵	+0.82	7, 8, 10	

^a Ent, DFO, and EDTA form 1:1 Fe(II):ligand complexes. DP and Phen form 1:3 Fe(II):ligand complexes. The K_d and E^o values listed here are representative of the trends discussed in the main text and were obtained under various experimental conditions as detailed in the references.

Fig. S1. Metal depletion by CP-Ser under aerobic conditions. Tris:TSB was treated with 10.5 μ M (250 μ g/mL) CP-Ser in the absence (black) or presence (red) of ~3 mM BME at 30 °C, 150 rpm. The Mn (A), Fe (B, reproduced from Fig. 2B of the main text), Co (C), Ni (D), Cu (E), and Zn (F) in the CP-treated medium was analyzed by ICP-MS at t = 0, 1, 2, 4, 8, 24, and 48 h (mean ± SDM, *n* = 3).

Fig. S2. Metal depletion by Δ His₃Asp under aerobic conditions. Tris:TSB was treated with 10.5 μ M (250 μ g/mL) CP-Ser in the absence (black) or presence (red) of \approx 3 mM BME at 30 °C, 150 rpm. The Mn (A), Fe (B, reproduced from Fig. 2B of the main text), Co (C), Ni (D), Cu (E), and Zn (F) in the CP-treated medium was analyzed by ICP-MS at t = 0, 1, 2, 4, 8, 24, and 48 h (mean ± SDM, *n* = 3).

Fig. S3. Metal depletion by Δ His₄ under aerobic conditions. Tris:TSB was treated with 10.5 μ M (250 μ g/mL) CP-Ser in the absence (black) or presence (red) of \approx 3 mM BME at 30 °C, 150 rpm. The Mn (A), Fe (B, reproduced from Fig. 2B of the main text), Co (C), Ni (D), Cu (E), and Zn (F) in the CP-treated medium was analyzed by ICP-MS at t = 0, 1, 2, 4, 8, 24, and 48 h (mean ± SDM, *n* = 3).

Fig. S4. Iron depletion of bacterial growth media by CP-Ser. (A) Tris:BHI and (B) Tris:LB were treated with 10.5 μ M (250 μ g/mL) CP-Ser in the absence (black) or presence (red) of \approx 3 mM BME at 30 °C, 150 rpm. The metal content of Fe was analyzed by ICP-MS at t = 0, 1, 2, 4, 8, 24, and 48 h (mean ± SDM, *n* = 3).

Fig. S5. Schematic cartoon of the ferrozine assay quantifying Fe(II) and Fe(III). A solution of 10 μ M Fe(III) citrate in 75 mM HEPES, 100 mM NaCl, 2 mM CaCl₂, pH 7.0 was incubated with 10.5 μ M CP. At each time point, aliquots of the mixture were transferred to microcentrifuge tubes and treated with ferrozine in the absence (Fe(II), blue) and presence (total Fe, red) of ascorbic acid. The optical absorption spectrum of each sample was collected, and Fe concentration was quantified using a calibration curve.

Fig. S6. Optical absorption spectroscopy of 2',2'-dipyridyl (DP) incubated in bacterial growth medium and buffer solutions. Representative optical absorbance difference spectra of (A) TSB, (B) BHI, (C) LB, and (D) 10 μ M Fe(III) citrate in 75 mM HEPES, 100 mM NaCl, 2 mM CaCl₂, pH 7.0 incubated with 1.0 mM DP at 30 °C, 150 rpm. The spectrum collected at t = 0 h was subtracted from those of other time points (t = 2, 4, 8, 24, 48 h).

Fig. S7. Chemical structures of the siderophores employed in this study.

Supplementary References

- W. R. Harris, C. J. Carrano, S. R. Cooper, S. R. Sofen, A. E. Avdeef, J. V. McArdle and K. N. Raymond, Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes, *J. Am. Chem. Soc.*, 1979, **101**, 6097–6104.
- C.-W. Lee, D. J. Ecker and K. N. Raymond, The pH-dependent reduction of ferric enterobactin probed by electrochemical methods and its implications for microbial iron transport, *J. Am. Chem. Soc.*, 1985, **107**, 6920–6923.
- 3. L. D. Loomis and K. N. Raymond, Solution equilibria of enterobactin and metalenterobactin complexes, *Inorg. Chem.*, 1991, **30**, 906–911.
- E. Farkas, É. A. Enyedy and H. Csóka, A comparison between the chelating properties of some dihydroxamic acids, desferrioxamine B and acetohydroxamic acid, *Polyhedron*, 1999, **18**, 2391–2398.
- I. Spasojević, S. K. Armstrong, T. J. Brickman and A. L. Crumbliss, Electrochemical Behavior of the Fe(III) Complexes of the Cyclic Hydroxamate Siderophores Alcaligin and Desferrioxamine E, *Inorg. Chem.*, 1999, **38**, 449–454.
- 6. R. M. Hutcheson, M. D. Engelmann and I. F. Cheng, Voltammetric studies of Zn and Fe complexes of EDTA: Evidence for the push mechanism, *Biometals*, 2005, **18**, 43–51.
- K. Ogura and K. Miyamoto, Electron transfer reactions of some ferrous complexes of substituted 1,10-phenanthroline, *Electrochim. Acta*, 1977, 22, 1357–1359.
- Y. W. D. Chen, K. S. V. Santhanam and A. J. Bard, Solution redox couples for electrochemical energy storage: I. iron(III)-iron(II) complexes with O-phenanthroline and related ligands, *J. Electrochem. Soc.*, 1981, **128**, 1460–1467.
- 9. D. K. Hazra and S. C. Lahiri, The dissociation constants of 2,2'-bipyridine and its iron(II) complex in water-methanol mixtures, *Anal. Chim. Acta*, 1975, **79**, 335–340.
- 10. R. M. Smith and A. E. Martell, *Critical Stability Constants Volume 2: Amines*, Plenum Press, New York, 1975.