Electronic Supplementary Information (ESI)

Pharmaco-genomic Investigations of Organo-iridium Anticancer Complexes Reveal Novel Mechanism of Action

Jessica M. Hearn, George M. Hughes, Isolda Romero-Canelón, Alison F. Munro, Belén Rubio-Ruiz, Zhe Liu, Neil O. Carragher, and Peter J. Sadler

Supplementary Material

Methods	S2
Table S1	S6
Table S2	S7
Table S3	S8
Table S4	S9
Figure S1	S11
Figure S2	S12
Figure S3	S13
Figure S4	S14
Figure S5	S15
Figure S6	S16
Figure S7	S17
Reference	S17

Methods

Roswell Park Memorial Institute (RPMI-1640) medium, as well as foetal bovine serum, L-glutamine, penicillin/streptomycin mixture, trypsin, trypsin/EDTA, phosphate buffered saline (PBS) were purchased from PAA Laboratories GmbH. HPLC grade ethanol, β -mercaptoethanol, PI (>94%), Annexin V-FITC Apoptosis Detection Kit and RNAse A were obtained from Sigma Aldrich. For RNA sequencing, cell shredders and mini-prep kits were purchased from Qiagen.

Cell maintenance

The A2780, human ovarian carcinoma cell line was obtained from the European Collection of Cell Cultures (ECACC). Cells were grown in RPMI-1640 medium supplemented with 10% (v/v) foetal calf serum, 1% (v/v) 2 mM glutamine and 1% (v/v) penicillin (10 k units/mL)/streptomycin (10 mg/mL). All cells were maintained in 75 mL culture flasks at 310 K with 5% CO₂ humidified atmosphere. Cells were grown as adherent monolayers and split when 80-90% confluent, using 0.25% trypsin.

Screening in the Sanger cell panel

Briefly, cells were seeded in 96 well plates at ca.15% confluency and left to incubate for 24 h at 310 K, 5% CO₂, 95% air and 100% relative humidity. For adherent cell lines, cells were treated with nine concentrations of each compound (2-fold dilution series over 256-fold concentration range) and returned to the incubator for 72 h. Cells were then fixed with 4% formaldehyde for 30 min and stained with 1 μ M Syto60 for 1 h. Quantitation of fluorescent signal intensity was performed using a plate reader at excitation/emission wavelengths of 630/695 nm. For suspension cell lines, cells were treated with compound immediately following plating, and returned to the incubator for 72 h. Cells were stained with 55 μ g/mL Resazurin, prepared in glutathione-free medium, for 4 h. Quantitation of fluorescent signal intensity was performed by the Sanger Bioinformatics Institute. All Figures presented here were reconstructed using the R statistical programme.

RNA sequencing

Experimental

A2780 cells were seeded in P100 Petri dishes at 3 x 10⁶ cells per plate in 10 mL RPMI-1640 medium. Plates were incubated for 24 h at 310 K, 5% CO₂, 95% air and 100% relative humidity. Stock solutions of each compound and of the vehicle control were prepared in 5% (v/v) DMSO, 10% (v/v) saline, and 85% (v/v) RPMI-1640 medium. Cells were exposed to complex 2 at a final concentration of 400 nM. The final DMSO concentration for all cell samples did not exceed 0.05% v/v. After compound addition, cells were incubated for a further 4, 12, 24 and 48 h. Medium was aspirated from cells and cells were washed twice with PBS before trypsinising and collection. To each sample, 600 µL RLT lysis buffer (Qiagen) was added and the samples vortexed. Lysate was pipetted directly into QIAshredder spin columns (Qiagen) and centrifuged. Lysate was transfered to gDNA eliminator spin columns (RNeasy plus mini kit, Qiagen) and centrifuged. Columns were discarded and 600 uL of 70% ethanol was added to each sample flow-through. Samples were transfered into RNeasy spin columns (RNeasy plus mini kit, Qiagen) and centrifuged. Column-bound RNA samples were washed with RW1 and RPE buffer (RNeasy plus mini kit, Qiagen) before RNA collection in 70 µL RNAsefree water. Samples were stored at 193 K for no more than 2 months. Samples were diluted 1:10 fold in RNAse-free water and run on a NanoDrop 1000 spectrophotometer machine and the absorbance at 230, 260 and 280 nm recorded to calculate the 260/230 and 260/280 ratios. Samples with A260/230 >2.0 and A260/280 >1.9 were passed. The concentration of RNA in each solution was also estimated using the NanoDrop and was verified using a 2100 Agilent Bioanalyzer and an RNA 6000 Nano Kit (Agilent), and the Qubit assay (Life Technologies). All samples had a RNA integrity number (RIN) > 9.50. A minimum of 1 μ g RNA for each sample was transferred to Oxford Genomics Centre (Wellcome Trust Centre for Human Genetics) in a total of 30 µL RNAse-free water in skirted 96 well plates.

Reverse phase protein microarrays (RRPA)

 4×10^5 A2780 cells were seeded per well in 6-well plates, with samples in duplicate. Cells were pre-incubated in drug-free media for 48 h at 310 K in a

5% CO₂ humidified atmosphere. After this, cells were treated at 150 nM and 450 nM of complex 2 for 4, 24, 48 and 72 h. Control samples were treated with medium containing 0.1% DMSO. Following exposure, drug-containing medium was removed, and cells were washed twice with PBS and lysed with CLB1 buffer (Zeptosens-Bayer) according to manufacturer's instructions. Cell lysates were normalised to a uniform protein concentration of 2 mg/mL with CLB1 buffer (Zeptosens-Bayer) prior to preparing a final 4-fold concentration series of; 0.2; 0.15; 0.1 and 0.75 mg/mL in spotting buffer CSBL1 (Zeptosens-Bayer). The diluted concentration series of each sample was printed onto hydrophobic Zeptosens protein microarray chips (ZeptoChip[™], Zeptosens-Bayer) under environmentally controlled conditions (constant 50% humidity at 287 K) using a non-contact printer (Nanoplotter 2.1e, GeSiM). A single 400 pL droplet of each lysate concentration was deposited onto the Zeptosens chip. A reference grid of Alexa Fluor 647 conjugated BSA was spotted onto each sub-array, each sample concentration series was spotted in between reference columns. After array printing, the arrays were blocked with an aerosol of BSA solution using a custom designed nebuliser device (ZeptoFOGTM, Zeptosen-Bayer) for 1.5 h to prevent non-specific antibody binding. The protein array chips were subsequently washed in double deionised water (DDW) and dried prior to performing a dual antibody immunoassay comprising of a 24 h incubation of primary antibodies followed by 2.5 h incubation with secondary Alexa Fluor 647 conjugated antibody detection reagent (anti-rabbit or anti-mouse 647 Fab, Invitrogen). Following secondary antibody incubation and a final wash step in BSA solution, the immunostained arrays were imaged using the ZeptoREADER instrument (Zeptosens-Bayer). For each-sub-array, five separate images were acquired using different exposure times ranging from 0.5-10 s. Microarray images representing the longest exposure without saturation of fluorescent signal detection were automatically selected for analysis using the ZeptoView[™] 3.1 software. A weighted linear fit through the 4-fold concentration series was used to calculate the relative fluorescence intensity (RFI) value for each sample replicate. Local normalisation of sample signal to the reference BSA grid was used to compensate for any intra- or inter-array/chip variation. RFI values were further normalised to a house keeping protein and to the negative

S4

control, to provide the final RFI to represent the relative abundance of total, phosphorylated and cleaved proteins in compound-treated samples relative to the DMSO control for each time point.

Description	Vield Mb O20	% Manned	Avg. Quality
Description			score
4 h control	975.855	98.45	36.7
4 h control	901.135	98.6	36.65
4 h control	701.445	98.9	36.8
4 h drug	1016.67	99.1	36.7
4 h drug	640.475	98.75	36.85
4 h drug	901.065	98.1	36.65
12 h control	968.815	98.65	36.65
12 h control	1208.1	97	36.25
12 h control	658.935	98.75	37.25
12 h drug	710.245	97.8	37.1
12 h drug	651.6	98.75	37.3
12 h drug	728.13	98.9	37.2
24 h control	591.46	98.9	37.3
24 h control	763.42	98.25	37.2
24 h control	663.875	98.6	37.2
24 h drug	794.815	98.2	37.2
24 h drug	754.52	98.65	36.95
24 h drug	864.57	97.5	36.85
48 h control	876.415	98.15	36.95
48 h control	1003.08	97.95	37
48 h control	853.78	98.25	37
48 h drug	894.37	95.55	36.8
48 h drug	811.94	97.3	36.9
48 h drug	1026.57	97.6	36.8

 Table S1. Summary statistics for RNA sequencing experiment.

Table S2. Pathway analysis showing the top five most-mapped processes for DEG
with -1.0 < LogFC > 1.0 and FDR < 0.05 after exposure to 2. IPA has identified
pathways of interest, with associated significance <i>p</i> - and z-values.

Time	Upstream	p-value	Activation	Predicted
point (n)	regulator	0.05 10-15	z-score	acuvity
	TNF	3.25×10^{-13}	3.676	Activated
	LY294002	$2.67 \ge 10^{-14}$	-2.413	Inhibited
4	PDGF BB	$2.15 \ge 10^{-13}$	4.766	Activated
	TGFβ1	$2.62 \ge 10^{-13}$	3.063	Activated
	ERK	1.31 x 10 ⁻¹²	4.221	Activated
	TNF	$1.48 \ge 10^{-14}$	3.238	Activated
	UO126	2.19 x 10 ⁻¹¹	-2.470	Inhibited
12	LY294002	$2.34 \ge 10^{-11}$	-2.466	Inhibited
	beta-estradiol	$3.29 \ge 10^{-11}$	-0.400	-
	TREM1	6.67 x 10 ⁻¹¹	1.771	Activated
24	TGFβ1	$1.30 \ge 10^{-24}$	2.206	Activated
	TNF	3.94 x 10 ⁻²²	6.101	Activated
	LPS	7.13 x 10 ⁻²²	7.223	Activated
	PDGF BB	1.33 x 10 ⁻²¹	5.287	Activated
	beta-estradiol	$3.42 \ge 10^{-21}$	2.230	Activated
48	TNF	4.93 x 10 ⁻¹²	3.646	Activated
	IL1β	7.74 x 10 ⁻⁰⁹	3.343	Activated
	LPS	1.87 x 10 ⁻⁰⁹	2.211	Activated
	ESR1	3.17 x 10 ⁻⁰⁹	0.282	-
	TGFβ1	3.48 x 10 ⁻⁰⁹	1.717	Activated

Table S3. Generation of total ROS and superoxide by complex **2** in A2780 ovarian carcinoma cells exposed to IC₅₀ concentrations. Values obtained from triplicate experiments. Determination of statistical significance by two-sample independent Welch t-test assuming unequal variance: $p \le 0.05^{\circ}$, $p \le 0.01^{\circ}$, $p \le 0.001^{\circ}$, $p \le 0.001$

	High Superoxide	High ROS and Superoxide	High ROS	Low ROS and Superoxide
	FL1-FL2+	FL1+FL2+	FL1+FL2-	FL1-FL2-
	Q1	Q2	Q3	Q4
Neg CTL	0.17 ± 0.07	0	0	99.82 ± 0.07
Complex 2	0.1 ± 0.1	84 ± 1 ****	16 ± 1 ****	0.3 ± 0.5

Table S4. List of publicly-released compounds tested by the Sanger Institute in the cell line screen

681640 (5Z)-7-Oxozeaenol 17-AAG A-443654 A-770041 ABT-263 **ABT-869 ABT-888** AC220 AG-014699 AICAR AKT inhibitor VIII AMG-706 AP-24534 AR-42 AS601245 AS605240/KIN001-173 AT-7519 ATRA AUY922 AV-951 AX11492 Axitinib AZ628 AZD-0530 AZD-2281 AZD2281 AZD6244 AZD6244 AZD6482 AZD6482 AZD7762 AZD8055 BAY 61-3606 Bexarotene BI-2536 **BIBW2992 Bicalutamide BIRB 0796** BIX02189 Bleomycin **BMN-673** BMS-345541 BMS-509744 BMS-536924 BMS-708163 BMS-754807 Bortezomib **Bosutinib** Bryostatin 1 BX-795 CAL-101

Camptothecin CAY10603 CCT007093 CCT018159 **CEP-701** Cetuximab CGP-082996 CGP-60474 CH5424802 CHIR-99021 CHIR-99021 CI-1040 Cisplatin CMK CP466722 CP724714 **CUDC-101** CX-5461 Cyclopamine Cvtarabine Dasatinib DMOG Docetaxel Doxorubicin EHT 1864 **EKB-569** Elesclomol Embelin Epothilone B Erlotinib Etoposide EX-527 FH535 FK866 FR-180204 FTI-277 GDC-0449 GDC0941 GDC0941 Gefitinib Gemcitabine Genentech Cpd 10 GNF-2 GSK-1904529A GSK-650394 GSK1070916 GSK1120212 GSK2118436 GSK2126458 GSK269962A GSK429286A GSK690693

GW 441756 GW843682X HG-5-113-01 HG-5-88-01 HG-6-64-1 (KIN001-206) I-BET Imatinib **INCB-18424** IPA-3 JNJ-26854165 JNK Inhibitor VIII JNK-9L JQ1 **JQ12** JW-7-24-1 JW-7-52-1 KIN001-055 KIN001-102 KIN001-135 KIN001-167/ZSTK474 KIN001-175/BX-912 KIN001-201/TAK-715 KIN001-236 KIN001-242/FMK KIN001-244 KIN001-260 KIN001-266 KIN001-270 KU-55933 Lapatinib LAQ824 Lenalidomide LFM-A13 LY317615 Masitinib Methotrexate MG-132 Midostaurin Mitomycin C MK-2206 MLN4924 MP470 MPS-1-IN-1 MS-275 NG-25 Nilotinib NPK76-II-72-1 NSC-207895 NSC-87877 NU-7441 Nutlin-3a

NVP-BEZ235 NVP-BHG712 NVP-TAE684 **Obatoclax Mesylate OSI-027 OSI-906 OSI-930** OSU-03012 PAC-1 Paclitaxel Parthenolide Pazopanib PD-0325901 PD-0332991 PD-173074 PF-02341066 PF-4708671 PF-562271 PHA-665752 PHA-793887 **PI-103 PIK-93** piperlongumine PLX4720 PLX4720 (for rescreen control) "PXD101, Belinostat" **Pyrimethamine** QL-VIII-58 QL-X-138 **QL-XI-92** QL-XII-47 QL-XII-61 QS11 Rapamycin RDEA119 **RDEA119** RO-3306 Roscovitine rTRAIL S-Trityl-L-cysteine Salubrinal SB 216763 SB-505124 SB-715992 SB52334 SB590885 Shikonin SL 0101-1 **SN-38** SNX-2112 Sorafenib STF-62247 Sunitinib T0901317

Tamoxifen Temozolomide Temsirolimus TG101348 **TGX221** Thapsigargin THZ-2-102-1 THZ-2-49 Tipifarnib TL-1-85 TL-2-105 **TPCA-1** Tubastatin A TW 37 **UNC0638** UNC0638 Vinblastine Vinorelbine **VNLG/124** Vorinostat VX-11e VX-680 VX-702 WH-4-023 WZ-1-84 WZ3105 XAV 939 XL-184 XL-880 XMD11-85h XMD13-2 XMD14-99 XMD15-27 XMD8-85 XMD8-92 Y-39983 YK 4-279 YM155 YM201636 Z-LLNIe-CHO ZG-10 "Zibotentan, ZD4054" ZM-447439

Figure S1. Box and whisker plot showing the distribution of log IC_{50} values for complexes **1** (ZL49) (blue), **2** (ZL109) (green) and CDDP (red) in all cell lines as well as the distribution of the mean log IC_{50} values for 202 drugs in the screen (grey). Whiskers extend to whichever is the lower value of the upper/lower quartile +1.5x the interquartile range, or the maximum/minimum y value, respectively. Cell lines which are less sensitive to **2** are highlighted in a red box. Data for osmium complexes **3** (FY26) and **4** (FY12) are also shown for comparison. For structures see Figure 1.

Figure S2. Bar plot of the number of cell lines of each tissue type screened against organo-iridium complex **2.** Cell lines significantly insensitive to **2** highlighted in green with the corresponding % of total cell lines of that type. Tissue groups where no percentage is given contained no cell lines resistant to **2**.

Figure S3. Multidimensional scaling (MDS) plots for RNA sequencing data. **(A)** Samples grouped as control (blue) and 2-exposed (orange), demonstrating a differential drug-induced response. **(B)** Grouping of samples across the time series, with 4 h control and 2-exposed samples in blue, 12 h in green, 24 h in orange and 48 h in red The contrasting behavior of the 48 h datasets compared to earlier time points is evident.

Figure S3 shows natural separation of the samples into clusters, and good agreement between the triplicate measurements. The biggest source of variation is by time point, the second by exposure-status, i.e. whether they are exposed as a control or to a compound.

Figure S4. (A) Venn diagram showing the number of differentially-expressed genes at 4, 24 and 48 h after exposure to **2**. Only those genes with -1.0 < LogFC > 1.0 and FDR < 0.05 are included. **(B)** Graph showing the number of up- (red) and down-regulated (green) genes at each time point. Only those genes with -1.0 < LogFC > 1.0 and FDR < 0.05 are included.

Figure S5. Generation of reactive oxygen species (ROS) and superoxide (SO) analysis by flow cytometry of A2780 ovarian carcinoma cells exposed to complex **2** for 24 h at IC₅₀ concentration at 310 K. Cells stained with orange/green fluorescent reagents. Pyocyanin was the positive control (orange).

Figure S6. Heat map of DEGs In the oxidative stress response pathway in response to **FY26** (complex 3) published previously.¹ Only DEGs with FDR < 0.10 are included.

Figure S7. Heat map of DEGs for ZL109 (complex 2) in the apoptotic pathway. Only DEGs with FDR < 0.10 are included.

Reference

1 J. M. Hearn, I. Romero-Canelón, B. Qamar, Z. Liu, I. Hands-Portman and P. J. Sadler, Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis, *ACS Chem. Biol.*, 2013, **8**, 1335–1343.