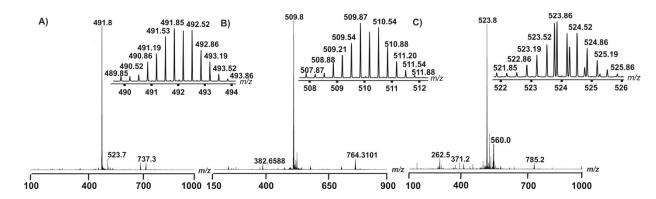
Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018

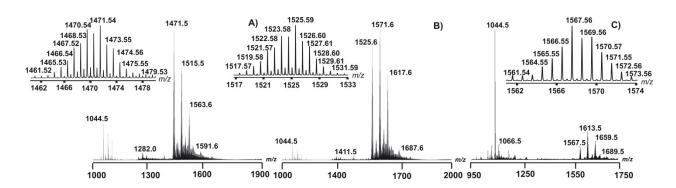
Supporting Information

Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins

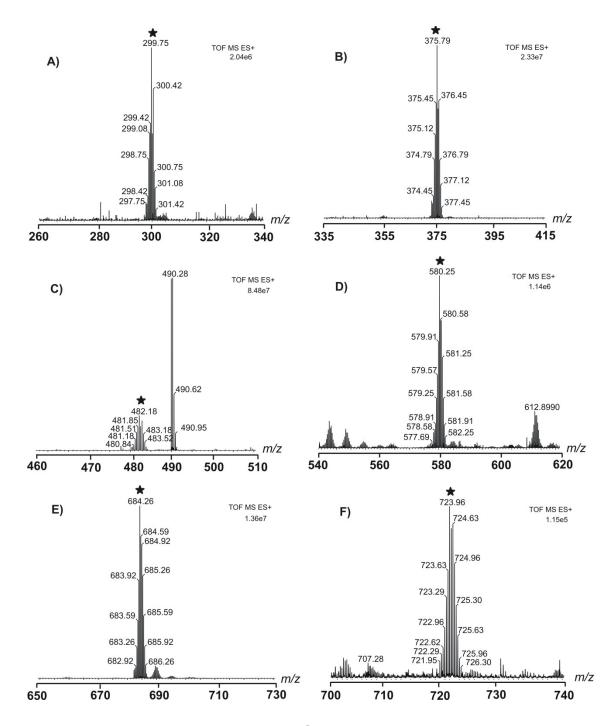
Marija Nišavić^a, Goran Janjić^b, Amela Hozić^c, Marijana Petković^a, Zoran Vujčić^d, Miloš Milčić^d, and Mario Cindrić^c*

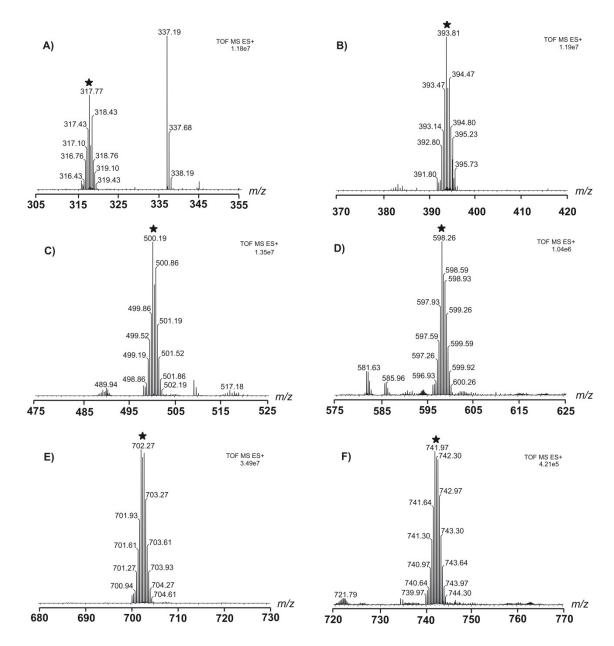

^aDepartment of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia

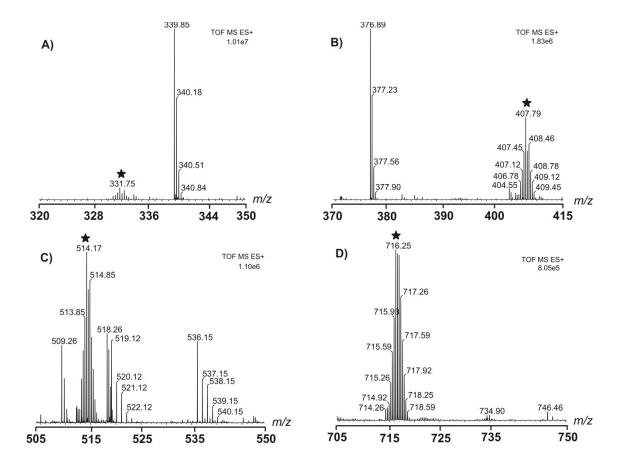
bInstitute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia


^cCentre for Proteomics and Mass Spectrometry, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

^dFaculty of Chemistry, University of Belgrade, Studentski trg 12-14, 11000 Belgrade, Serbia


^{*}Correspondence to: mario.cindric@irb.hr


Fig. S1. Positive ion mode ESI MS spectra of angiotensin II adducts with compounds [Ru(Cl-tpy)(en)Cl]⁺ (A), [Ru(Cl-tpy)(dach)Cl]⁺ (B) and [Ru(Cl-tpy)(bipy)Cl]⁺ (C). Inset in each spectrum shows isotopic distribution of triply charged ruthenated peptide. Additional peaks at *m/z* 737.3, 764.3 and 785.2 for compounds en, dach and bipy, respectively, correspond to doubly charged ruthenated angiotensin II.


Fig. S2. Negative ion mode ESI MS spectra of angiotensin II adducts with compounds [Ru(Cl-tpy)(en)Cl] $^+$ (A), [Ru(Cl-tpy)(dach)Cl] $^+$ (B) and [Ru(Cl-tpy)(bipy)Cl] $^+$ (C). Inset in each spectrum shows isotopic distribution of singly charged ruthenated peptide. Two subsequent peaks in each spectrum (at m/z 1515.5 and 1563.6 for en compound, 1571.6 and 1617.6 for dach and 1613.5 and 1659.5 for bipy compound) represent mono- and di-formic acid adducts. Signal at 1044.5 in each spectrum correspond to free angiotensin II.

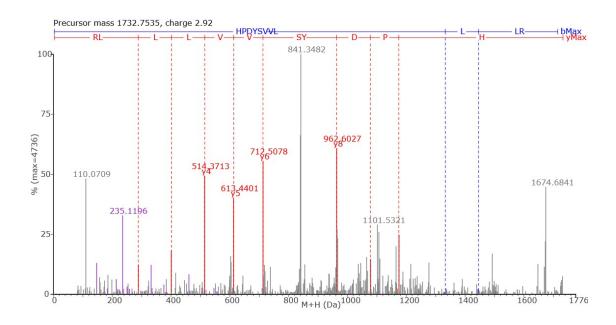
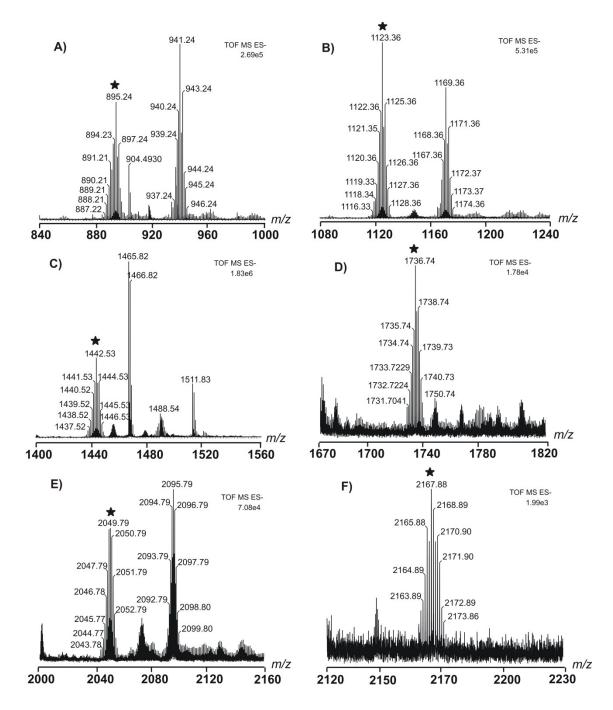

Fig. S3. Enlarged positive ion mode LE MS^E spectra showing [Ru(Cl-tpy)(en)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C), HPDYSVVLLLR (D), DVFLGMFLYEYAR (E) and HPYFYAPELLFFAK (F). Target sequences are marked with a black asterisk in each spectrum.

Fig. S4. Enlarged positive ion mode LE MS^E spectra showing [Ru(Cl-tpy)(dach)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C), HPDYSVVLLLR (D), DVFLGMFLYEYAR (E) and HPYFYAPELLFFAK (F). Target sequences are marked with a black asterisk in each spectrum.


Fig. S5. Enlarged positive ion mode LE MS^E spectra showing [Ru(Cl-tpy)(bipy)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C) and DVFLGMFLYEYAR (D). Target sequences are marked with a black asterisk in each spectrum.

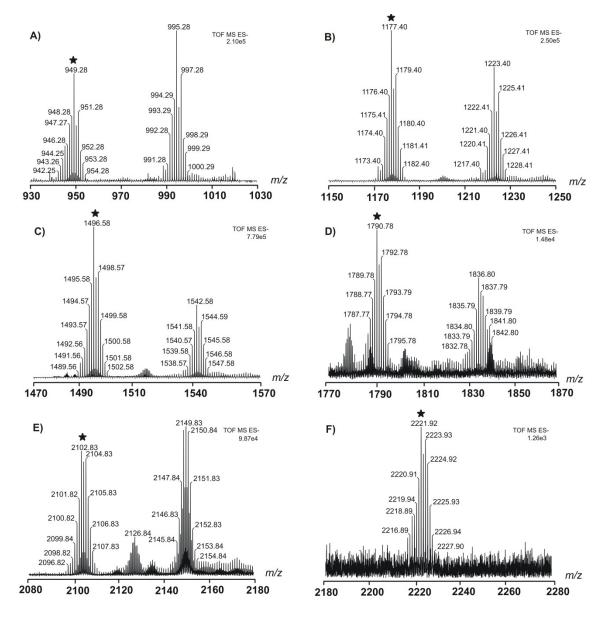
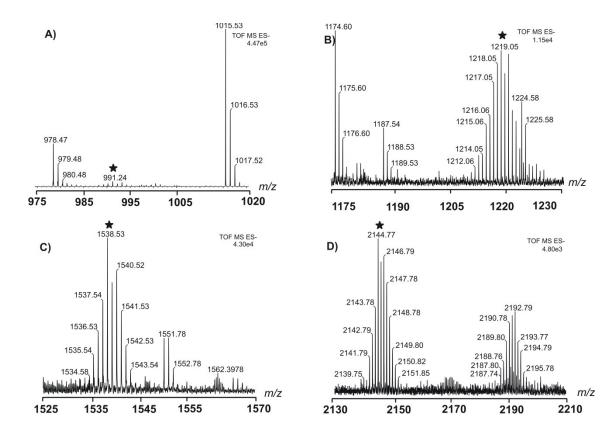
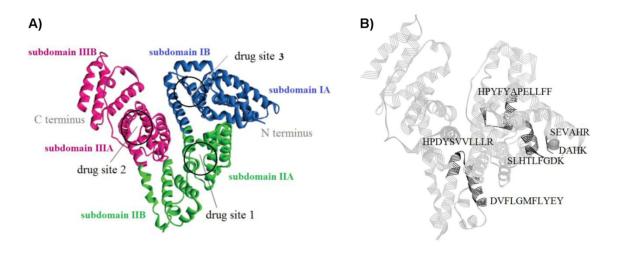

Fig. S6. PLGS generated HE MS^E spectrum of ³³⁸HPDYSVVLLLR³⁴⁸ HSA sequence adduct with compound [Ru(Cl-tpy)(en)Cl]⁺. The identified precursor is triply positively charged ion with a mass of 1732 Da. The identified mass corresponds to the peptide adduct with compound [Ru(Cl-tpy)(en)Cl]⁺, after Cl ligand hydrolysis.

Table S1. PLGS software identified HE MS^E peptide fragment ions. marks neutral loss (H₂O, NH₃).


Peptide sequence	Number of ions	Fragment ion identity	
⁵ SEVA <u>H</u> R ¹⁰	12	b ₂ , b ₃ , b ₄ , b ₄ , b ₅ , y ₂ , y ₃ , y ₄ , y ₅ , y ₅ , y ₆	
⁶⁵ SL <u>H</u> TLFGDK ⁷³	9	Y ₂ , Y ₂ , Y ₃ , Y ₃ , Y ₄ , Y ₅ , Y ₆ , Y ₇ , Y ₇	
¹⁴⁶ HPYFYAPELLFFAK ¹⁵⁹	10	b ₁₀ , y ₂ , y ₃ , y ₄ , y ₆ , y ₇ , y ₈ , y ₁₂ , y ₁₃ , y ₁₄	
³²⁴ DVFLGMFLYEYAR ³³⁶	7	b ₁ , b ₁₁ , y ₈ , y ₉ , y ₁₀ , y ₁₁ , y ₁₂	
³³⁸ HPDYSVVLLLR ³⁴⁸	13	b_2 , b_5 , y_2 , y_3 , y_4 , y_5 , y_6 , y_7 , y_8 , y_8 , y_9 , y_{10} , y_{11}	


Fig. S7. Enlarged negative ion mode LE MS^E spectra showing [Ru(Cl-tpy)(en)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C), HPDYSVVLLLR (D), DVFLGMFLYEYAR (E) and HPYFYAPELLFFAK (F). Target sequences are marked with a black asterisk in each spectrum.

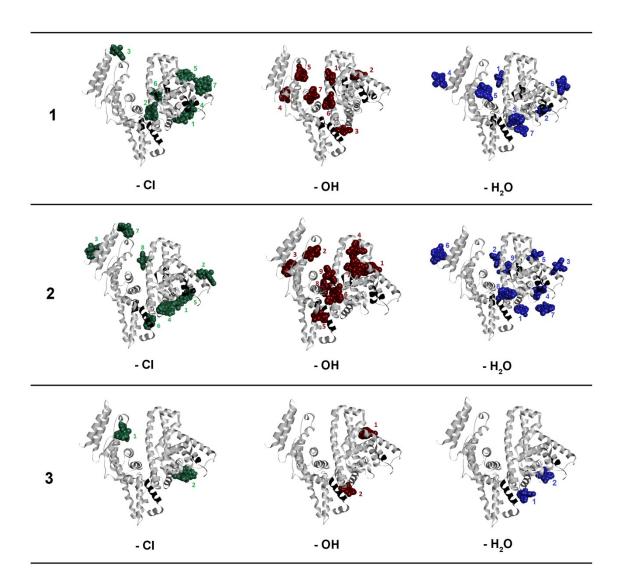

Fig. S8. Enlarged negative ion mode LE MS^E spectra showing [Ru(Cl-tpy)(dach)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C), HPDYSVVLLLR (D), DVFLGMFLYEYAR (E) and HPYFYAPELLFFAK (F). Target sequences are marked with a black asterisk in each spectrum.

Fig. S9. Enlarged negative ion mode LE MS^E spectra showing [Ru(Cl-tpy)(dach)]-bound HSA sequences: DAHK (A), SEVAHR (B), SLHTLFGDK (C) and DVFLGMFLYEYAR (D). Target sequences are marked with a black asterisk in each spectrum.

Fig. S10. HSA structure with major drug binding sites (A) and spatial localisation of MS-identified sequences for the binding of compounds [Ru(Cl-tpy)(en)Cl]⁺, [Ru(Cl-tpy)(dach)Cl]⁺ and [Ru(Cl-tpy)(bipy)Cl]⁺.

Fig. S11. HSA binding sites for chloro, hydroxo and aqua forms of compounds [Ru(Cl-tpy)(en)Cl]⁺, [Ru(Cl-tpy)(dach)Cl]⁺ and [Ru(Cl-tpy)(bipy)Cl]⁺. Chloro forms are shown green, hydroxo red and aqua forms are shown blue. Target MS-identified HSA sequences are highlighted black.

Table S3. Binding energies of chloro, hydroxo and aqua forms of compounds [Ru(Cl-tpy)(en)Cl]⁺, [Ru(Cl-tpy)(dach)Cl]⁺ and [Ru(Cl-tpy)(bipy)Cl]⁺, for each HSA binding site. Binding energies of chloro complexes that correspond to MS-identified sequences are highlighted green, while hydroxo complexes are marked red. The remaining binding energy values that most probably correspond to non-covalent interactions are black.

Ru(II)	Binding	Binding energy (kcal/mol)		
compound	site No	-Cl	-OH	-H₂O
	1	-8,12	-7,80	-7,90
1	2	-7,27	-6,32	-7,83
	3	-7,22	-5,84	-7,40
[RuL(4'-Cl-tpy)(en)]	4	-7,09	-5,77	-
	5	-6,99	-5,42	-
	6	-6,83	-5,34	-
	7	-6,74	-5,22	-
	1	-9,14	-8,56	-3,02
	2	-8,67	-7,75	-2,95
	3	-8,53	-7,08	-2,73
2	4	-8,53	-6,93	-2,66
[RuL(4'-Cl-tpy)(dach)]	5	-8,38	-6,82	-
	6	-8,37	-6,77	-
	7	-7,46	-6,55	-
	8	-7,18	-6,48	-
	9	-	-6,47	-
3	1	-7,97	-6,33	-1,78
[RuL(4'-Cl-tpy)(bipy)]	2	-6,98	-5,84	-1,44