Electronic Supporting Information

Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2

Agnieszka Drozd,^{‡a} Dominika Wojewska,^{‡a} Manuel David Peris-Díaz, ^a Piotr Jakimowicz,^b

Artur Krężela*

Contribution from

^a Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland

^b Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland

* corresponding author, E-mail: artur.krezel@uwr.edu.pl

‡ These authors contributed equally. Current address of A. Drozd: Captor Therapeutics Ltd Wrocław, Poland; D. Wojewska: Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands.

*corresponding author

E-mail: artur.krezel@uwr.edu.pl

[‡]These authors contributed equally

Materials

 $(NH_4)_2CO_3$, hydrochloric acid. (4-(2-hvdroxvethvl)-1- $ZnSO_4 \cdot 7H_2O_2$ NaClO₄·H₂O, piperazineethanesulfonic acid (HEPES), D-fructose, β-nicotinamide adenine dinucleotide tris(2-carboxyethyl)phosphine (NADH), Tris base. hydrochloride (TCEP), ethylenediaminetetraacetic acid (EDTA), iodoacetamide (IAA), dipicolinic acid. trifluoroacetic acid (TFA), thioanisole, anisole, 1,2-ethanedithiol (EDT), sorbitol dehydrogenase (SDH) from ship liver were purchased from Sigma-Aldrich. Trypton, yeast extract, LB broth, agar, agarose, isopropyl-β-D-1-thiogalactopyranoside (IPTG), SDS were from Lab Empire, NaCl, NaOH, glycerol, ethyl ether (Et₂O), KH₂PO₄·H₂O K₂HPO₄ from POCH (Gliwice Poland), pTYB21 vector and chitin resin from New England BioLabs, 5,5'dithiobis-(2-nitrobenzoic acid) (DTNB) from TCI Europe N.V., Chelex 100 resin from BioRad, and trypsin (mass spectrometry grade) from Promega GmbH. Fmoc-protected amino acids, piperidine. *N*,*N*,*N*',*N*'-tetramethyl-*O*-(1*H*-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU), N,N-dimethylformamide (DMF), dichloromethane (DCM), N,Ndiisopropylethylamine (DIEA), 1-methyl-2-pyrrolidinone (NMP), and dithiothreitol (DTT), and acetonitrile (ACN) were purchased from Iris Biotech GmbH. All of the experiments were performed in chelexed buffers and solutions. All buffers were prepared with Milli-Q water obtained with deionizing water system (Merck Millipore, USA).

Primer sequences used in PCR reaction for the amplifaction of MT2 (MT2a) DNA fragment:

forward 5'-GGTGGTTGCTCTTCCAACATGGATCCGAACTGCAGCTGTGCGGC-3', reverse 5'-CCACTATAGAATGCGCGTCGTCGACGTAAATAGCGAGC-3'.

Conditions for PCR reaction.

PCR reactions were performed using PHUSION polymerase, nucleoside triphosphates (dNTP), DNA 6X Loading Dye, GeneRuler 1 kb DNA Ladder, GeneRuler Low Range DNA Ladder) (Fermentas). Conditions for PCR reactions were:

Steps	Reaction	Temperature	Time
1	first denaturation	98°C	60 s
2	denaturation	98°C	10 s
3	annealing	52.6°C	30 s
4	elongation	72°C	3 s
30 cycles of steps 2-4			
5	final elongation	72°C	5 min
6	end of reaction	12°C	Inf.

number of	m/z calculated	m/z found
modifications	(average)	(average)
0	6043.3	6043.7 ± 1.3
1	6100.4	6100.3 ± 1.1
2	6157.4	6156.4 ± 0.7
3	6214.5	6212.7 ± 1.0
4	6271.5	6269.1 ± 0.7
5	6328.6	6326.9 ± 0.7
6	6385.6	6383.7 ± 0.5
7	6437.4	6440.8 ± 1.1
8	6499.7	6498.0 ± 0.9
9	6556.8	6555.5 ± 0.6
10	6613.8	6611.6 ± 2.2
11	6670.9	6669.2 ± 1.3
12	6727.9	6726.0 ± 1.9
13	6785.0	6783.9 ± 1.6
14	6842.0	6841.1 ± 1.4
15	6899.1	6899.8 ± 1.3
16	6956.1	6956.9 ± 1.2
17	7013.2	7014.8 ± 0.6
18	7070.2	7073.0 ± 1.0
19	7127.3	7132.4*
20	7184.3	7188.9*

Table S1. List of calculated and found m/z values of diversely modified, undigested MT2. Found values are averaged from all measured spectra. High measurement error due to the use of linear mode. Peaks with asterisk were found only once, so no standard deviation is given.

Figure S1. MALDI spectra of undigested *apo*-MT2 form. a) not modified control, b) modified with IAA, c) modified with IAA after incubation with 6 M urea. M stands for modification and the preceding number indicates the number of modified cysteines; unidentified signals are indicated with asterisk.

Table S2. All identified tryptic fragments in MS analysis for partially modified MT2, previously titrated with sequential molar equivalents of Zn(II). M refers to acetamide moiety (preceding number indicates the number of modified cysteines in the fragment); *n.d.* - not detected; $^{\text{ox}}$ - disulfide bridge (cysteine oxidation); $^{\text{ox,ox}}$ - occurrence of two disulfide bridges, $^{\text{ox, ox}}$ - occurrence of three disulfide bridges. Yellow and green color demonstrate cysteine residues and cleavage site of trypsin, respectively.

apo-MT2

MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CK</mark>	C <mark>K</mark>	Е <mark>С</mark> К	CTS <mark>CKK</mark>	S <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> A <mark>K</mark>	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a
[1-20], 3M			[26 21]	[32-43], 3M		[52 61] OM
[1-20], 4M	n.d.	n.d.	[20-51],	[32-43], 4M	[44-51], 2M	[52-01], 0M
[1-20], 5M			I IVI	[32-43], 5M		[JZ-0], ZIVI
		E <mark>CK</mark> C	k <mark>c</mark> ts <mark>ckk</mark>			
		[23-31], 1M				

apo-MT2 + 6M urea

- MDPN <mark>C</mark> SCAAGDSCTCAGSCK	CK	E	C <mark>KC</mark> TS <mark>CKK</mark> SCCSCCPVG <mark>C</mark> AK	<mark>C</mark> aqg <mark>C</mark> I <mark>CK</mark> gasd <mark>KC</mark> S <mark>CC</mark> a
[1-20] ^{ox} , 1M				
[1-20] ^{ox} , 2M				
[1-20], 2M	nd		100 101 011	[44-61], 5M
[1-20] ^{ox} , 3M	n.a.		[23-43], oivi	[44-61], 6M
[1-20], 3M				
[1-20], 5M				
	1	1	CTS <mark>CKK</mark> S <mark>CC</mark> SCCPVG <mark>C</mark> AK	
			[26-43], 6M	
			[26-43], 7M	
			S <mark>CC</mark> SCCPVG <mark>C</mark> A <mark>K</mark>	
			[32-43], 4M	
			[32-43], 5M	

apo-MT2 + 1 eq. Zn(II)

MDPNCSCAAGDSCTCAGSCK	C <mark>K</mark>	E <mark>C</mark> K	CTS <mark>CKK</mark>	S <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> A <mark>K</mark>	<mark>c</mark> aqg <mark>c</mark> i <mark>ck</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a		
[1-20] 3M				[32-43], 2M				
[1_20] 4M	nd	nd	[26-31],	[32-43], 3M	[44-51] 2M	[52-61] 2M		
[1_20] 5M	n.u.	m.u.		5M	2M	[32-43], 4M	[1101], 200	[02 0 1], 2111
[1-20], 510			[32-43], 5M					

MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CK</mark>	CKECK	CTS <mark>CKK</mark>	S <mark>CC</mark> SCCPVG <mark>C</mark> A <mark>K</mark>	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a
[1_20] 2M	n.d.		[32-43], 1M		
[1-20], 214		[06.04]	[32-43], 2M	[44-51], 1M	150 C41 4M
[1-20], 310		[20-31],	[32-43], 3M	[44-51], 2M	
[1-20], 4M [1-20], 5M		1M	[32-43], 4M	[44-51], 3M	[52-61], 2M
			[32-43], 5M		
	C <mark>K</mark> E <mark>CKC</mark> TS				
	[21-43], 2M				

apo-MT2 + 2 eq. Zn(II)

apo-MT2 + 3 eq. Zn(II)

MDPN <mark>C</mark> SCAAGDSCTCAGSCK	CKECK	CTS <mark>CKK</mark>	S <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> A <mark>K</mark>	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a
[1-20], 5M	n.d.	[26-31], 1M	[32-43] ^{OX} , 1M [32-43], 1M [32-43] ^{OX} , 2M [32-43], 2M [32-43] ^{OX} , 3M [32-43], 3M [32-43], 4M [32-43], 5M	[44-51] ^{ox} , 1M [44-51], 1M [44-51], 2M	[52-61], 0M [52-61], 1M [52-61], 2M
	ckeckctsckasccsccpvgcak [21-43], 1M [21-43], 2M				

apo-MT2 + 4 eq. Zn(II)

MDPN <mark>C</mark> SCAAGDSCTCAGSCK	CKECKCTSCK	S <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> A <mark>K</mark>	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a
		[32-43] ^{OX, OX} ,		
		OM		
		[32-43] ^{OX} ,		
		OM	[44-51] ^{OX} ,	
		[32-43] ^{OX} ,	0M	
		1M	[44-51], 0M	
[1-20], 3M	n.d.	[32-43], 1M	[44-51] ^{OX} ,	[52-61] ^{OA} , UM
		[32-43] ^{OX} , 2M	1M	[51-61], UN
		[32-43], 2 M	[44-51], 1M	
		[32-43] ^{OX} , 3M	[44-51], 2M	
		[32-43], 3M		
		[32-43], 4M		
		[32-43], 5M		
		K <mark>scc</mark> sccpvg <mark>c</mark> a <mark>k</mark>	CAQG <mark>C</mark> I <mark>CK</mark> G.	ASD <mark>K</mark>
		[31-43] ^{ox} , 0M	[11 56]0x	114
		[31-43], 0M	[++-50]**,	

[31-43] ^{ox} , 1M		
	<mark>c</mark> aqg <mark>c</mark> i <mark>ck</mark> gasd <mark>kc</mark> s <mark>cc</mark> a	
	[44-61] ^{ox,ox,ox} , 0M	

MDPN <mark>C</mark> SCAAGDSCTCAGSCK	C <mark>KEC</mark> K	CTS <mark>CKK</mark>	S <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> A <mark>K</mark>	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s	S <mark>CC</mark> A
[1-20] ^{ox, ox} , 0M [1-20] ^{ox,} 0M [1-20], 0M [1-20] ^{ox} , 1M [1-20], 1M [1-20] ^{ox} , 2M [1-20], 2M	n.d.	[26-31], 1M	[32-43] ^{ox, ox} , OM [32-43] ^{ox,} 0M [32-43], 0M [32-43] ^{ox, ox} , 1M [32-43] ^{ox,} 1M [32-43], 1M [32-43], 2M	[44-51] ^{ox} , OM [44-51] , OM [44-51] ^{ox} , 1M [44-51], 1M	[52-61] ^{0x} [52-61]	s, OM , OM
		-	KSCCSCCPVGCAK [31-43] ^{ox, ox} , 0M [31-43] ^{ox} , 0M	CAQGCIC <mark>R</mark> GZ [44-56]∞×,	1M	
		'		CAQG <mark>CICK</mark> [44-61]° [44-61]	gasd <mark>kc</mark> scc2 ^{x, ox, ox} , OM ^{ox, ox} , OM	Ð

apo-MT2 + 5 eq. Zn(II)

	~	
apo-MT2 -	+ 6 ea.	Zn(II)

MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CK</mark>	C <mark>K</mark> E <mark>CK</mark>	CTS <mark>CKK</mark>	S <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> A <mark>K</mark>	CAQGCICKGASDKCSCCA		CCA
[1_20]0X, 0X_0M		[26-43	3] ^{ox, ox, ox} , 0M	[44-61] ^{ox, ox, ox} , 0M		М
	nd	[26-4	13] ^{ox, ox} , 0M	[44-	-61] ^{ox, ox} , 0N	1
	11.0.	[26	-43] ^{ox} , 0M	[44	4-61] ^{ox} , 0M	
[1-20], UM		[26	6-43], 0M	[4	4-61], 0M	
			KS <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> AK	CAQG <mark>C</mark> I	C <mark>k</mark> gasd <mark>k</mark>	
			[31-43] ^{ox, ox} ,			
			ОM	[44-56] ^{ox} , 0M		
			[31-43] ^{ox} , 0M			
			[31-43], 0M			
			S <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> A <mark>K</mark>	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s	S <mark>CC</mark> A
			[32-43] ^{ox, ox} ,	[44-		
			OM	5110x	[52 61]0	× OM
			[32-43] ^{ox} , 0M		[52-01]*	, 0101
			[32-43], 0M			

apo-MT2 + 7 eq. Zn(II)

mdpn <mark>c</mark> s <mark>c</mark> aagds <mark>c</mark> t <mark>c</mark> ags <mark>ck</mark>	CKECKCTSCK	S <mark>CC</mark> SCCPVG <mark>C</mark> AK	<mark>C</mark> AQG <mark>C</mark> I <mark>CK</mark> GASD <mark>KC</mark> S <mark>CC</mark> A

		[32-43] ^{ox, ox} ,	[44-61] ^{ov}	^{ĸ, ox, ox} , 0M
[1-20] ^{ox} , 0M [1-20], 0M		OM	[44-61]	^{ox, ox} , OM
	n.a.	[32-43] ^{ox} , 0M	[44-61	1] ^{ox} , 0M
		[32-43], 0M		
MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CK</mark> C		<mark>k</mark> s <mark>cc</mark> s <mark>cc</mark> pvg <mark>c</mark> ak	<mark>c</mark> aqg <mark>c</mark> i <mark>ck</mark>	
[1-22] ^{ox} , 1M [1-22], 1M		[31-43] ^{ox, ox} ,	[44-51] ^{ox} ,	
		OM	OM	
		[31-43] ^{ox} , 0M		
	· · ·		CAQG <mark>C</mark> I <mark>CK</mark> GA	ASD <mark>K</mark>
		[44-56] ^{ox} ,	OM	
			[44-56], 0	M

Table S3. Full list of calculated and found m/z of all tryptic fragments from MT2, found in all samples. M - carbamidomethylated cysteine (preceding number indicates the number of modified cysteines in the fragment); Asterisk - peptide found only once; ^{ox} - occurrence of disulfide bridge (cysteine oxidation); ^{ox,ox} - occurrence of two disulfide bridges; ^{ox,ox,ox} - occurrence of three disulfide bridges. Yellow and green color demonstrate cysteine residues and cleavage site of trypsin, respectively.

fragment	sequence	m/z calculated	<i>m/z</i> found
[1-20] ^{ox, ox} , 0M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TCAGS <mark>CK</mark>	1919.62	1919.61 ± 0.02
[1-20] ^{ox} , 0M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TCAGS <mark>CK</mark>	1921.63	1921.63 ± 0.02
[1-20], 0M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TCAGS <mark>CK</mark>	1923.65	1923.65 ± 0.02
[1-20] ^{ox} , 1M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TCAGS <mark>CK</mark>	1978.65	1978.65 ± 0.01
[1-20], 1M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TCAGS <mark>CK</mark>	1980.67	1980.70*
[1-20] ^{ox} , 2M	MDPN <mark>C</mark> SCAAGDSCTCAGSCK	2035.67	2035.69 ± 0.02
[1-20], 2M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TCAGS <mark>CK</mark>	2037.69	2037.69 ± 0.02
[1-20] ^{ox} , 3M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TCAGS <mark>CK</mark>	2092.70	2092.77 ± 0.05
[1-20], 3M	MDPN <mark>C</mark> SCAAGDSCTCAGSCK	2094.71	2094.71 ± 0.04
[1-20], 4M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TCAGS <mark>CK</mark>	2151.73	2151.74 ± 0.01
[1-20], 5M	MDPN <mark>C</mark> SCAAGDSCTCAGSCK	2208.75	2208.75 ± 0.01
[1-22] ^{ox} , 0M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CKCK</mark>	2152.74	2152.74*
[1-22] ^{ox} , 1M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CKCK</mark>	2209.76	2209.85 ± 0.01
[1-22], 1M	mdpn <mark>c</mark> s <mark>c</mark> aagds <mark>c</mark> tcags <mark>ckck</mark>	2211.77	2211.85*
[21-43], 2M	CKECKCTSCKKSCCSCCPVGCAK	2052.83	2052.76 ± 0.02
[23-30] ^{ox} , 0M	E <mark>CKCKC</mark> TS <mark>CK</mark>	899.34	899.35*
[23-30] ^{ox} , 1M	E <mark>CKCKC</mark> TS <mark>CK</mark>	956.36	956.37*
[23-31], 1M	E <mark>CKCKC</mark> TS <mark>CKK</mark>	1086.47	1086.47*
[23-43], 8M	E <mark>CKC</mark> TS <mark>CKK</mark> SCC <mark>SCC</mark> PVG <mark>C</mark> A <mark>K</mark>	2627.01	2627.02*
[26-30], 0M	CTS <mark>CK</mark>	541.21	541.22*
[26-31], 0M	CTS <mark>CKK</mark>	669.31	669.31*
[26-31], 1M	CTS <mark>CKK</mark>	726.33	726.34 ± 0.00
[26-31], 2M	CTS <mark>CKK</mark>	783.35	783.36*
[26-43] ^{ox, ox, ox} , 0M	CTSCKKSCCSCCPVGCAK	1804.64	1804.65 ± 0.02
[26-43] ^{ox, ox} , 0M	CTSCKKSCCSCCPVGCAK	1806.66	1806.65 ± 0.01
[26-43] ^{ox} , 0M	CTSCKKSCCSCCPVGCAK	1808.67	1808.68*

[26-43], 0M	CTSCKKSCCSCCPVGCAK	1810.69	1810.68*
[26-43], 6M	CTSCKKSCCSCCPVGCAK	2152.82	2152.84 ± 0.01
[26-43], 7M	CTSCKKSCCSCCPVGCAK	2209.84	2209.86 ± 0.01
[31-43] ^{ox, ox} , 0M	KK <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1284.47	1284.46 ± 0.02
[31-43] ^{ox} , 0M	KK <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1286.48	1286.47 ± 0.03
[31-43], 0M	KK <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1288.50	1288.52 ± 0.02
[32-43] ^{ox, ox} , 0M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1156.37	1156.37 ± 0.01
[32-43] ^{ox} , 0M	KSCCSCCPVGCAK	1158.39	1158.38 ± 0.01
[32-43], 0M	KSCCSCCPVGCAK	1160.40	1160.41 ± 0.01
[32-43] ^{ox} , 1M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1215.41	1215.41 ± 0.02
[32-43], 1M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1 217.42	1217.42 ± 0.02
[32-43] ^{ox} , 2M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1272.43	1272.43 ± 0.02
[32-43], 2M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1274.45	1274.45 ± 0.02
[32-43] ^{ox} , 3M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1329.45	1329.46 ± 0.02
[32-43], 3M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1331.47	1331.47 ± 0.01
[32-43], 4M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1388.49	1388.49 ± 0.01
[32-43], 5M	K <mark>SCC</mark> SCCPVG <mark>C</mark> AK	1445.51	1445.51 ± 0.02
[44-51] ^{ox} , 0M	CAQG <mark>C</mark> IC <mark>K</mark>	823.33	823.33 ± 0.02
[44-51], 0M	CAQG <mark>C</mark> I <mark>CK</mark>	825.34	825.34 ± 0.01
[44-51] ^{ox} , 1M	CAQG <mark>C</mark> IC <mark>K</mark>	880.35	880.35 ± 0.02
[44-51], 1M	CAQG <mark>C</mark> I <mark>CK</mark>	882.36	882.37 ± 0.01
[44-51], 2M	CAQG <mark>C</mark> IC <mark>K</mark>	939.39	939.39 ± 0.01
[44-56] ^{ox} , 0M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>K</mark>	1281.54	1281.55 ± 0.01
[44-56], 0M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>K</mark>	1283.55	1283.54*
[44-56] ^{ox} , 1M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>K</mark>	1338.56	1338.56 ± 0.02
[44-61] ^{ox, ox, ox} , 0M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>KC</mark> SCCA	1744.60	1744.60 ± 0.02
[44-61] ^{ox, ox} , 0M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>KC</mark> SCCA	1746.62	1746.61 ± 0.02
[44-61] ^{ox} , 0M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>KC</mark> SCCA	1748.64	1748.56 ± 0.13
[44-61], 0M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>KC</mark> SCCA	1750.65	1750.64*
[44-61], 5M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>KC</mark> SCCA	2035.76	2035.74 ± 0.00
[44-61], 6M	CAQG <mark>C</mark> I <mark>CK</mark> GASD <mark>KC</mark> SCCA	2092.78	2092.77 ± 0.01
[52-61] ^{ox} , 0M	GASD <mark>KC</mark> S <mark>CC</mark> A	942.31	942.31 ± 0.02
[52-61], 0M	GASD <mark>KC</mark> S <mark>CC</mark> A	944.33	944.33 ± 0.00
[52-61], 1M	GASD <mark>KC</mark> S <mark>CC</mark> A	1001.35	1001.35 ± 0.01
[52-61], 2M	GASD <mark>KC</mark> S <mark>CC</mark> A	1058.37	1058.37 ± 0.01

Cysteine residue number	ASA (Å ²)
5	59.49
7	12.12
13	14.52
15	53.90
19	39.88
21	67.05
24	33.29
26	99.71
29	120.33
33	19.31
34	30.86
36	80.54
37	47.85
41	31.42
44	79.25
48	87.87
50	70.32
57	13.26
59	98.33
60	95.75

Table S4. The solvent-accessible surface area (SASA) for Cys residues in *apo*-MT2 obtainedafter 4 ns MD production. SASA was obtained from PDBePISA.

Figure S2. Comparison of ESI-MS spectra of *apo*-MT2 titrated with sequential 0-7 eq of Zn(II) (a-h). All shown signals have +4 charge. Found and calculated m/z are listed in Table S2.

number of	coordination mode	m/z calculated	m/= found	
bound Zn(II)	used for calculation	(average)	m/2 Iound	
0	-	1511.6	1510.0 ± 1.7	
1	ZnS ₄	1526.9	1524.7 ± 1.2	
2	$2 \times ZnS_4$	1542.2	1541.8 ± 0.5	
3	Zn ₃ S ₉	1558.3	1557.2 ± 1.0	
4	Zn_4S_{11}	1574.2	1573.2 ± 0.6	
5	Zn ₅ S ₁₅	1589.5	1589.2 ± 0.2	
6	Zn ₆ S ₁₉	1604.1	1603.5 ± 0.9	
7	Zn ₇ S ₂₀	1621.0	1621.7 ± 0.2	

Table S5. List of calculated and found m/z values for *apo*-MT2 (signal +4) titrated with Zn(II) ions on ESI-MS spectrometer.

Figure S3. MS/MS spectra of selected tryptic fragments of MT2 with 1 eq. Zn(II) modified with IAA. a) MS/MS of tryptic fragment [32-43], 4M (calculated 1388.49 *m/z*, found 1388.43 *m/z*). Obtained daughter ions localize the modifications on C33, C34, C37 and C41. C36 is not modified. b) MS/MS of tryptic peptide [44-51], 2M (calculated 939.38 *m/z*, found 939.40 *m/z*). Fragment ions localize the modifications on C44 and C50, while C48 is not modified. c) MS/MS of tryptic fragment [52-61], 2M (calculated 1058.37 *m/z*, found 1058.38 *m/z*). Modified are C57 and C59, while C60 is not modified. M stands for carbamidomethylation and preceding number indicates the number of modified cysteines in given fragment. C) indicates carbamidomethylated cysteine, C is unmodified cysteine.

Figure S4. Model structures of $Zn_{0-4}MT2$ obtained from molecular dynamics simulations. a) Zn_1MT2 , b) Zn_2MT2 , c) Zn_3MT2 and d) Zn_4MT2 species.

Figure S5. MALDI-MS spectra for two selected spots of nano-LC separation of tryptic digest, sample titrated with 2 eq. Zn(II). a), b) Fragment [44-51], 2M is more abundant on both spots than fragment [44-51], 1M.

Figure S6. MS/MS spectra of [44-51] tryptic peptides of MT2a sample with 2 eq. Zn(II), modified with IAA. a) MS/MS for tryptic fragment [44-51]^{ox}, 1M (calculated 880.34 m/z, found 880.36 m/z). C44 is modified, while C48 and C50 are forming disulfide bridge. b) MS/MS for tryptic peptide [44-51], 2M (calculated 939.38 m/z, found 939.40 m/z). Fragment ions localize the modifications on C44 and C50, while C48 is not modified. M stands for acetamide moiety and preceding number indicates the number of modified cysteines in given fragment. C) indicates modified cysteine, C is unmodified cysteine. All spectra were recorded in LIFT mode.

Figure S7. MALDI-MS spectrum of separated tryptic digest of MT2 with 3 eq. Zn(II), single spot in 970-1080 m/z range. Fragment [52-61] exists with one and two modified cysteines simultaneously.

Figure S8. MS/MS spectra of [44-51] tryptic peptides of MT2 sample with 3 eq. Zn(II), modified with IAA. a) MS/MS for tryptic fragment $[44-51]^{\text{ox}}$, 1M (calculated 880.34 *m/z*, found 880.36 *m/z*). C44 is modified, while C48 and C50 are forming disulfide bridge (the same is true for 2 eq Zn²⁺). b) MS/MS for tryptic peptide [44-51], 2M (calculated 939.38 *m/z*, found 939.40 *m/z*). Fragment ions localize the modifications on C44 and C50, but also on C48. It should be the result of co-existence of several isoforms. However, C48 shows a slight preference to be unmodified. M stands for acetamide moiety and preceding number indicates the number of modified cysteines in given fragment. C) indicates modified cysteine, C is unmodified cysteine. All spectra were recorded in LIFT mode.

Figure S9. MALDI-MS spectra of nano-LC separated tryptic digest, sample titrated with 4 eq. Zn(II), two different spots. a) spot one, 815-950 m/z range; b) spot two, 815-950 m/z range. Tryptic fragment [44-51] is visible with zero, one and two modified cysteines at the same time.

Figure S10. MS/MS spectra of MT2 sample with 6 eq. Zn(II) prove that there is no modification in amino acid region 31-61. a) MS/MS for $[31-43]^{\text{ox}}$, 0 M (calculated 1286.48 *m/z*), b) MS/MS for $[44-51]^{\text{ox}}$, 0 M calculated 823.33 *m/z*, found 823.36 *m/z*), c) MS/MS for $[52-61]^{\text{ox}}$, 0 M calculated 942.31 *m/z*, found 942.29 *m/z*). All spectra were recorded in LIFT mode.

Figure S11. MS/MS spectrum of tryptic peptide $[1-22]^{\text{ox}}$, 1M (calculated 2209.76 *m/z*, found 2209.85 *m/z*) detected in MT2 with 7 eq. Zn(II). Found fragment ions localize the modification on C21. Asterisk indicates the fragment for which four different sequences can be attributed: DPNCSCAAG-28, PNCSCAAGD-28, TCAGSCGC)-H₂O, NCSCAAGDS-H₂O. 1 M stands for single modification. C) indicates modified cysteine, C is unmodified cysteine. Spectrum was recorded in LIFT mode.

Zn₅MT

Zn₆MT

Zn₇MT

Figure S12. Comparison of MD-based and X-ray (PDB ID: 4MT2) structures. Blue ribbon represents X-ray MT2 and brown ribbon MD structure. Zn(II) is represented by grey balls, and Cd(II) by yellow balls. a) Comparison of α domain for Zn₅MT2a. b) Comparison of β -and α -domain for Zn₆MT. c) Comparison of Zn₇MT obtained through MD and X-ray structure.

Figure S13. Comparison of MALDI-MS spectra of undigested, differentially modified samples, previously treated with 0-3 eq. of Zn(II) over *apo* β MT2a (a-d). M denotes acetamide moiety and preceding number indicates the number of modified cysteines in the fragment; β -WT – unmodified β MT2 domain. See main text for details. List of calculated and found *m/z* values can be found in Table S5.

Table S6. List of calculated and found m/z values for diversely modified β MT2. Found values are averaged from all measured spectra. High measurement error due to the use of linear mode. Peaks with asterisk were detected only once, so no standard deviation is given; - peak not detected.

number of	m/z calculated	<i>m/z</i> found
modifications	(monoisotopic)	(monoisotopic)
0	3251.2	3251.2 ± 0.0
1	3308.3	3308.3 ± 0.0
2	3365.3	3365.3 ± 0.0
3	3422.3	3422.6 ± 0.5
4	3480.3	3479.3 ± 0.0
5	3537.3	3536.4*
6	3594.3	3596.4*
7	3651.4	3650.4*
8	3708.4	-
9	3765.4	3764.4*

Figure S14. Model MD-based structures of isolated β -domain of MT2a with 0-3 Zn(II) ions. a) *apo*- β MT2, b) Zn₁ β MT2, c) Zn₂ β MT2, d) Structure for Zn₃ β MT2.

Figure S15. Comparison of ESI-MS spectra (peak +3) of *apo*- β MT2 titrated with 0-3 eq. of Zn(II) (a-d). List of calculated and found *m/z* values can be found in Table S6.

Table S7.	List of calculate	d and found	<i>m/z</i> values	of β MT2a	titrated w	with Zn(II)	on ESI	mass
spectrome	ter, signal +3.							

number of	coordination mode	m/z calculated	m/z found
bound Zn(II)	used for calculation	(average)	m/2 Iound
0	-	1085.3	1084.6 ± 0.3
1	ZnS ₄	1105.7	1105.8 ± 0.2
2	$2 \times ZnS_4$	1126.2	1127.0 ± 0.5
3	Zn ₃ S ₉	1147.7	1148.1 ± 0.3

Table S8. All identified tryptic fragments of β MT2 titrated with 0-3 eq. of Zn(II). M denotes acetamide moiety (preceding number indicates the number of modified cysteines in the fragment); * - peptide found only once; ^{ox} – occurrence of disulfide bridge (cysteine oxidation); ^{ox, ox} - occurrence of two disulfide bridges; ^{ox,ox,ox} - occurrence of three disulfide bridges, **C** – cysteine residue, **K** - cleavage site of trypsin.

fragment	Sequence	m/z calculated	<i>m/z</i> found
[1-20] ^{ox, ox} , 0M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TC <mark>AGS<mark>CK</mark></mark>	1919.6	1919.5 ± 0.0
[1-20] ^{ox} , 0M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TC <mark>AGS<mark>CK</mark></mark>	1921.6	1921.6 ± 0.0
[1-20] ^{ox} , 1M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> TC <mark>AGS<mark>CK</mark></mark>	1978.7	1978.6 ± 0.1
[1-20] ^{ox} , 2M	MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CK</mark>	2035.7	2035.6 ± 0.1
[1-20], 3M	mdpn <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CK</mark>	2094.7	2094.7 ± 0.0
[1-20], 4M	mdpn <mark>C</mark> s <mark>C</mark> aagds <mark>C</mark> T <mark>C</mark> ags <mark>CK</mark>	2151.7	2151.8 ± 0.0
[1-20], 5M	mdpn <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CK</mark>	2208.8	2208.6*
[1-22], 1M	MDPN <mark>C</mark> SCAAGDS <mark>C</mark> TCAGS <mark>CKCK</mark>	2211.8	2211.6*
[1-25] ^{ox,ox} , 1M	MDPN <mark>C</mark> SCAAGDS <mark>C</mark> TCAGS <mark>CKCK</mark> ECK	2567.9	2567.8*
[1-25] ^{ox,ox} , 2M	MDPN <mark>C</mark> SCAAGDS <mark>C</mark> TCAGS <mark>CKCK</mark> ECK	2624.9	2624.7*
[1-25], 3M	MDPN <mark>C</mark> SCAAGDS <mark>C</mark> TCAGS <mark>CKCK</mark> ECK	2686.0	2685.8 ± 0.2
[1-25], 4M	MDPN <mark>C</mark> SCAAGDS <mark>C</mark> TCAGS <mark>CKCK</mark> ECK	2743.0	2742.0*
[1-25], 5M	MDPN <mark>C</mark> SCAAGDS <mark>C</mark> TCAGS <mark>CKCK</mark> ECK	2800.0	2800.6*
[21-25] ^{ox} , 0M	C <mark>K</mark> ECK	608.3	608.2*
[21-25], 1M	C <mark>K</mark> ECK	667.3	667.3 ± 0.0
[21-25], 2M	C <mark>K</mark> ECK	724.3	724.3 ± 0.0
[21-30] ^{ox} , 0M	C <mark>K</mark> ECKCTSCK	1130.4	1130.4*
[21-31] ^{ox} , 0M	C <mark>K</mark> E <mark>CKC</mark> TS <mark>CKK</mark>	1258.5	1258.5 ± 0.0
[21-31] ^{ox} , 1M	C <mark>K</mark> E <mark>CKC</mark> TS <mark>CKK</mark>	1315.6	1315.5 ± 0.0
[21-31] ^{ox} , 2M	C <mark>K</mark> E <mark>CKC</mark> TS <mark>CKK</mark>	1372.6	1372.6 ± 0.0
[21-31], 3M	C <mark>K</mark> E <mark>CKC</mark> TS <mark>CKK</mark>	1431.6	1431.6 ± 0.0
[21-31], 4M	C <mark>K</mark> E <mark>CKC</mark> TS <mark>CKK</mark>	1488.6	1488.6 ± 0.0
[23-31], 3M	E <mark>CKC</mark> TS <mark>CKK</mark>	1200.5	1200.5*
[26-31], 2M	CTS <mark>CKK</mark>	783.3	783.3 ± 0.0

Table S9. All identified daughter ions in MALDI-MS/MS spectrum of undigested β MT2, 5 M, detected in sample treated with 1 eq. Zn(II). These fragments prove the modification on C19, C21, C24, C26, C29 residues (highlighted verses indicate the modification sites). ^{I-V} - 1- 5 modifications, localization not known, <u>C</u> - cysteine.

fragment	sequence	m/z	m/z
Inagineiti	sequence	(calculated)	(found)
<i>y</i> ₉ +2M	<u>C</u> K <u>C</u> TS <u>C</u> KKS-NH ₂	1 100.5	1 100.3
<i>y</i> ₉ +3M	<u>C</u> K <u>C</u> TS <u>C</u> KKS-NH ₂	1 157.5	1 157.2
y ₁₀ +3M	E C KCTSCKKS-NH2	1 286.6	1 286.4
y ₁₁ +2M	KE C K C TS C KKS-NH2 ^{II}	1 357.6	1 357.1
y ₁₂ +1M	<u>C</u> KE <u>C</u> KKS-NH ₂ ^I	1 403.6	1 403.2
<i>y</i> ₁₁ +3M	KE C KCTSCKKS-NH2	1 414.7	1 414.3
y ₁₂ +2M	<u>C</u> KE <u>C</u> KKS-NH ₂ ^{II}	1 460.6	1 460.2
y ₁₂ +3M	<u>C</u> KE <u>C</u> KKS-NH ₂ ^{III}	1 517.7	1 517.3
<i>y</i> ₁₂ +4M	<u>C</u> KE <u>C</u> K C TS <u>CKKS-NH₂</u>	1 574.7	1 574.3
y ₁₃ +2M	K <u>C</u> KE <u>C</u> K <u>C</u> TS <u>C</u> KKS-NH ₂ ^{II}	1 588.7	1 588.4
y ₁₄ +2M	<u>C</u> K C KE C K C TS C KKS-NH ₂ ^{II}	1 691.7	1 691.4
<i>y</i> ₁₃ +4M	K <u>C</u> KE <u>C</u> K <u>C</u> TS <u>C</u> KKS-NH ₂	1 702.8	1 702.4
y ₁₅ +1M	S <u>C</u> K <u>C</u> KE <u>C</u> KS-NH ₂ ^I	1 721.8	1 721.4
y ₁₄ +3M	<u>C</u> K C KE C K C TS C KKS-NH ₂ ^{III}	1 748.8	1 748.3
y ₁₄ +4M	<u>C</u> K <u>C</u>KE<u>C</u>KCTS<u>C</u>KKS-NH₂^{IV}	1 805.8	1 805.3
y ₁₅ +3M //	S C K C KE C K C TS C KKS-NH ₂ ^{III}	1.025.0	1.025.4
$y_{16}+2M$	/ GS <u>C</u> K <u>C</u> KE <u>C</u> K <u>C</u> TS <u>C</u> KKS-NH ₂ ^{II}	1 835.8	1 835.4
y ₁₄ +5M	<u>C</u> K C KE C K C TS C KKS-NH ₂	1 862.8	1 862.5
y ₁₅ +4M //	S <u>C</u> KE <u>C</u> KE <u>C</u> KS-NH ₂	1 802 8	1 802 5
y ₁₆ +3M	/ GS <u>C</u> K <u>C</u> KE <u>C</u> K <u>C</u> TS <u>C</u> KKS-NH ₂ ^{III}	1 092.0	1 092.5
y ₁₆ +4M	GS <u>C</u> K <u>C</u> KE <u>C</u> KS-NH ₂ ^{IV}	1 949.8	1 949.4
y ₁₇ +3M	AGS C K C KE C K C TS C KKS-NH ₂ ^{III}	1 963.9	1 963.4
y ₁₆ +5M	GS C KCKECKCTSCKKS-NH2	2 006.9	2 006.5
y ₁₇ +4M	AGS <u>C</u> K <u>C</u> KE <u>C</u> KS-NH ₂ ^{IV}	2 020.9	2 020.5
y ₁₈ +4M	<u>C</u> AGS <u>C</u> K <u>C</u> KE <u>C</u> KS-NH ₂ ^{IV}	2 123.9	2 123.5
y ₂₁ +3M	SCTCAGSCKCKECKCTSCKKS-NH2 ^{III}	2 358.0	2 357.6
y ₂₁ +4M	S C TCAGSCKCKECKCTSCKKS-NH2 ^{IV}	2 415.0	2 414.5
y ₂₁ +5M	SCTCAGSCKCKECKCTSCKKS-NH2V	2 472.0	2 471.6
y ₂₃ +3M	DSCTCA CSCUCUECUCTSCUUS_NU III		
//		2 530.0	2 529.5
y ₂₄ +2M			
y ₂₃ +4M	DSCTCAGSCKCKECKCTSCKKS-NH ^{-IV}		
//	GDSCTCAGSCKCKECKCTSCKKS-NH ₂ ^{III}	2 587.0	2 586.6
y ₂₄ +3M			
y ₂₄ +3M	AGDSCTCAGSCKCKECKCTSCKKS-NH2 ^{III}	2 601.0	2 600.4
y ₂₃ +5M	DSCTCAGSCKCKECKCTSCKKS-NHo ^V		
//	/ GDSCTCAGSCKCKECKCTSCKKS-NH- ^{IV}	2 644.0	2 643.4
y ₂₄ +4M			

Table S10. All identified tryptic fragments obtained after MS analysis of MT2 incubated with *apo*-SDH and modified with iodoacetamide. M denotes acetamide moiety (preceding number indicates the number of modified cysteines in the fragment); *n.d.* - not detected, ^{ox} – occurrence of disulfide bridge (cysteine oxidation); ^{ox,ox} – occurrence of two disulfide bridges; ox,ox,ox – occurrence of three disulfide bridges; C – cysteine residue, K - cleavage site of trypsin.

MT2 + apo-SDH (5 min)

mdpn <mark>c</mark> s <mark>c</mark> aagds <mark>c</mark> tcagsc <mark>k</mark>	CKECK	CTS <mark>CK</mark>	S <mark>CC</mark> SCCPVG <mark>C</mark> A <mark>K</mark>	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a
[1-20] ^{ox, ox} , 0M [1-20] ^{ox} , 0M [1-20], 0M	n.d.	n.d.	[32-43] ^{ox,ox} , OM [32-43] ^{ox} , 0M [32-43], 0M	[44-61] ^{ox, ox} , 0M	
			<mark>k</mark> s <mark>cc</mark> s <mark>cc</mark> pvg <mark>c</mark> ak	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a
			[31_/3]0X, 0X	[44-51] ^{ox} ,	
			[01- 4 0] / ,	OM	[52-61] ^{ox} , 0M
			UNI	[44-51], 0M	

MT2 + apo-SDH (120 min)

MDPN <mark>C</mark> S <mark>C</mark> AAGDS <mark>C</mark> T <mark>C</mark> AGS <mark>CK</mark>	CKECK	CTS <mark>CK</mark>	S <mark>CC</mark> S <mark>CC</mark> PVG <mark>C</mark> A <mark>K</mark>	CAQG <mark>C</mark> I <mark>CK</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a
[1-20] ^{ox, ox} , 0M [1-20] ^{ox} , 0M [1-20], 0M	n.d.	[26-31], 1M	[32-43] ^{ox,ox} , OM [32-43] ^{ox} , 0M [32-43], 0M	[44-61] ^{ox, ox, ox} , 0M [44-61] ^{ox, ox} , 0M [44-61] ^{ox} , 0M	
			KSCCSCCPVGCAK	<mark>c</mark> aqg <mark>c</mark> i <mark>ck</mark>	gasd <mark>kc</mark> s <mark>cc</mark> a
			[31-43] ^{ox, ox} ,	[44-51] ^{ox} ,	[52 61]0X OM
			0M	OM	[52-01] ⁴ , 010
			[31-43] ^{ox} , 0M	[44-51], 0M	[JZ-01], UNI

Figure S16. MALDI spectra in selected ranges from different spots of digested MT2 sample incubated with *apo*-SDH for 120 min. a) tryptic fragment $[1-20]^{\text{ox}, \text{ox}}$, 0 M (*m/z* calculated 1919.62, *m/z* found 1919.59). b) tryptic fragment [26-31], 1M (*m/z* calculated 726.33, *m/z* found 726.33). c) tryptic fragment [32-43]^{ox,ox}, 0 M (*m/z* calculated 1156.36, *m/z* found 156.36). d) tryptic fragment [44-51]^{ox}, 0 M (*m/z* calculated 823.33, *m/z* found 823.33). e) tryptic fragment [52-61]^{ox}, 0 M (*m/z* calculated 942.31 *m/z* found 942.52). f) tryptic fragment [44-61], 0 M (*m/z* calculated 1744.60, *m/z* found 1744.63).

Figure S17. a) CD spectra of 10 μ M fully Zn(II)-loaded MT2 (Zn₇MT2, black line) in 20 mM Tris-HCl buffer (100 mM NaCl, 200 μ M TCEP pH 7.4) or Zn₆MT2 species obtained by the addition of 6 Zn(II) equivalents to *apo*-MT2 (red line) and incubation with 20 μ M EGTA (blue line). b) Magenta line shows metallothionein obtained by the addition of 100 μ M EDTA.