Supplemental Information

Kinetic Enhancement in High-Activity Enzyme Complexes Attached to Nanoparticles

Anthony P. Malanoski,^a Joyce C. Breger,^a Carl W. Brown III,^{a,b} Jeffrey R. Deschamps,^a

Kimihiro Susumu,^{c,d} Eunkeu Oh,^{c,d} George P. Anderson,^a

Scott A. Walper,^a and I. L. Medintz^{a*}

Mathematica Model parameters for points or curves in Figure 3

Panel A.

No QD: number of sites=0, k_1 =2.3676, k_{-1} =.1, k_2 =1.5*10⁶, k_{-2} =0, k_3 =410, k_{-3} =.01, k_4 = k_4 = k_5 = k_5 = k_5 = k_6 = k_7 =0, k_6 = k_7 =0

2: number of sites=2, k_1 =2.3676, k_{-1} =.1, k_2 =1.5*10⁶, k_{-2} =0, k_3 =410, k_{-3} =.01, k_4 = k_{-4} = k_5 = k_{-5} =0, k_6 = k_7 =55760, k_{-6} = k_{-7} =0.01

5: number of sites=5, k_1 =2.3676, k_1 =.1, k_2 =1.5*10⁶, k_2 =0, k_3 =410, k_3 =.01, k_4 = k_4 = k_5 = k_5 = k_5 =0, k_6 = k_7 =22550, k_6 = k_7 =0.01

Panel B.

Green dashed line: number of sites=500, k_1 =2.3676, k_2 =1, k_2 =1805.6, k_2 =0, k_3 =410, k_3 =.01, k_4 =.165731, k_4 =.1, k_5 = k_1 , k_5 = k_1 , k_6 =5330000, k_7 =2050000, k_6 = k_7 =0.01

Red dashed line: number of sites=1000, k_1 =2.3676, k_{-1} =.1, k_2 =1805.6, k_{-2} =0, k_3 =410, k_{-3} =.01, k_4 =.165731, k_{-4} =.1, k_5 = k_{-1} , k_{-5} = k_{-1} , k_6 =5330000, k_7 =2050000, k_{-6} =1.3, k_{-7} =0.01

Figure S1. Chemical structure of the compact ligand 4 (CL4) used to cap exchange the QDs and stabilize them in buffer. The molecule is shown in the thioctic acid form. {Susumu, 2011}

Figure S2. Representative TEM of the 525 nm emitting CdSe/ZnS core/shell QDs utilized in this study. TEMs were collected and analyzed as described in Ref. {Oh, 2013} {Oh, 2016}

QD _{525 nm} :β-gal	Glycerol (%)	$\eta_{s}\!/\eta_{w}$	$V_{\rm max}$ (μ M s ⁻¹)	$k_{\text{cat}}(\text{s}^{-1})$	$K_{\rm M}$ (μ M)	$k_{\rm cat}/K_{\rm M}~(\mu{ m M}^{-1}~{ m s}^{-1})$
0	0.0%	1.0	0.88±0.02	438±11	81±10	5.94
0	4.9%	1.2	1.66 ± 0.05	828±26	894±83	1.02
0	10.5%	1.5	1.89 ± 0.06	945±34	2334±175	0.45
0	18.3%	1.9	1.42 ± 0.08	709±40	2764±313	0.28
0	23.7%	2.0	1.12±0.12	559±63	3431±727	0.18
0	28.3%	2.2	1.22±0.12	608±61	5329±869	0.13
0	34.9%	2.6	0.96±0.14	479±69	5968±1359	0.09
0	40.4%	2.9	0.76 ± 0.08	380±42	8183±1310	0.05
4	0.0%	1.0	2.81±0.11	1416±56	272±45	5.72
4	4.93%	1.2	3.04 ± 0.08	1520±39	950±69	1.76
4	10.5%	1.5	3.01±0.08	1505±40	2014±120	0.82
4	18.3%	1.9	2.20±0.10	1102±52	3084±282	0.39
4	23.7%	2.0	2.44±0.14	1222±73	5817±551	0.23
4	28.3%	2.2	1.66±0.10	828±48	4833±473	0.19
4	34.9%	2.6	1.50±0.14	748±70	7841±1069	0.10
4	40.4%	2.9	0.76 ± 0.07	381±37	6095±925	0.07

Supplemental Table 1. Kinetic parameters for changes in viscosity using Michaelis-Menten form

QD _{525 nm} :β-gal	Lactose (µM)	$V_{\rm max}$ (μ M s ⁻¹)	$k_{\rm cat}$ (s ⁻¹)	$K_{\rm M}$ (μ M)	$k_{\rm cat}/K_{\rm M}~(\mu { m M}^{-1}~{ m s}^{-1})$
0	0	0.84±0.04	422±14	97±16	4.34
0	0.01	0.75 ± 0.04	376±17	87±26	4.32
0	0.1	0.83 ± 0.04	415±17	103±21	4.02
0	1	0.90 ± 0.04	454±20	126±27	3.60
0	10	0.80 ± 0.04	404±25	107±33	3.78
0	100	0.54 ± 0.02	272±6	140±16	1.94
0	1000	0.56 ± 0.02	283±11	590±79	0.48
0	10000	0.55 ± 0.04	277±44	3548±1048	0.08
4	0	2.88±0.14	1438±74	290±62	4.96
4	0.01	2.97±0.12	1484±64	263±48	5.64
4	0.1	2.76±0.14	1382±70	284±50	4.86
4	1	2.90±0.14	1449±69	327±62	4.44
4	10	2.53±0.12	1263±60	259±52	4.88
4	100	2.56±0.12	1279±55	227±43	5.62
4	1000	3.30±0.20	1652±103	667±127	2.48
4	10000	2.83±0.54	1414±273	4126±1405	0.34

Supplemental Table 2. Kinetic parameters for product inhibition using Michaelis-Menten form

Figure S3. Representative circular dichroism spectra collected from samples consisting of β -gal alone, the 525 QDs alone, and β -gal assembled with QD at a ratio of 4 QD/ β -gal. Ellipticity is expressed as the mean residue molar ellipticity (θ) in deg cm² dmol⁻¹. Data were collected and analyzed as in ref.{ Boeneman Gemmill, 2015 }

Supplemental References.

- Susumu, K., Oh, E., Delehanty, J.B., Blanco-Canosa, J.B., Johnson, B., Jain, V., Hervey, W.J., Algar, W.R., Boeneman, K., Dawson, P., Medintz, I.L. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. *Journal of the American Chemical Society*, 133, 9480–9496 (2011).
- Oh, E.; Fatemi, F.; Currie, M.; Delehanty, J.B., Pons, T.; Fragola, A.; Lévêque-Fort, S.; Goswami, R., Susumu, K.; Huston, A. and Medintz, I.L. PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation and Application to One- and Two-Photon Cellular Imaging. *Particle and Particle Systems Characterization* 30, 453-466 (2013).
- Oh, E., Delehanty, J.B., Field, L.D., Mäkinen, A.J., Goswami, R., Huston, A.L., Medintz, I.L. Synthesis and Characterization of PEGylated Luminescent Gold Nanoclusters Doped with Silver and Other Metals. *Chemistry of Materials* 28, 8676-8688 (2016).
- Boeneman Gemmill, K.; Díaz, S.; Blanco-Canosa, J.B.; Deschamps, J.R.; Pons, T.; Liu, H.-W.; Deniz, A.; Melinger, J.; Oh, E.; Susumu, K.; Stewart, M.; Hastman, D.; North, S.; Delehanty, J.B.; Dawson, P.; Medintz, I.L. Examining the Polyproline Nanoscopic Ruler in the Context of Quantum Dots. *Chemistry of Materials* 27, 6222-6237 (2015).