Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2017

Electronic supplementary information

Metal–Organic Framework Derived Hollow CoS₂ Nanotube Arrays: an Efficient Bifunctional Electrocatalyst for Overall Water Splitting

Cao Guan*, Ximeng Liu, Abdelnaby M. Elshahawy, Hong Zhang, Haijun Wu*, Stephen J. Pennycook, and John Wang*

¹Department of Materials Science and Engineering, National University of Singapore, 117574 Singapore. Email: msegc@nus.edu.sg; wu.haijun@u.nus.edu; msewangj@nus.edu.sg

Material and methods

Material Synthesis

Preparation of Co-MOF arrays on carbon cloth: an aqueous solution contains 2methylimidazole (C₄H₆N₂, 40 mL, 0.4 M) was quickly added into the aqueous solution of Co(NO₃)₂·6H₂O (40 mL, 25 mM), after which a piece of acid-treated CC substrate (2*5*0.036 cm³, the upper side and back side protected with by polytetrafluoroethylene tape) was immersed into the mixture solution. After reaction for 4 h, the sample was taken out, cleaned with deionized water and underwent another 4 h of growth in the same solution. Finally the sample was cleaned and vacuum dried overnight.

*Preparation of CoS*₂ *NTA/CC:* a piece of Co-MOF arrays on carbon cloth was immersed into an ethanol solution (80 mL) containing TAA (0.36 g). After reaction at 90 °C for 180 min, the sample was taken out, washed with ethanol, and dried at 60 °C. Then the sample was annealed in N₂ at 350 °C for 2h with a ramp rate of 2 °C min⁻¹. The mass loading of CoS₂ was measured to be ~1.2 mg cm⁻². Decreasing the reaction time to 60 min resulted in insufficient etching, while prolonging the reaction time to 300 min resulted in the collapse of the nanoarrays.

*Preparation of Co*₃*O*₄ *NWA/CC:* a piece of Co-MOF array on carbon cloth was annealed in N₂ at 500 °C for 2h with a ramp rate of 2 °C min⁻¹, and when the temperature dropped to 350 °C it was futher annealed in air for 2 h. The mass loading of Co₃O₄ was measured to ~0.6 mg cm⁻².

Preparation of Ir/C/CC and Pt/C/CC: commercial Pt/C (20 wt %, Alfa Aesar) or Ir/C (20 wt %, Premetek Co) was well-dispersed in diluted Nafion alcohol solution (0.5 mL of ethanol and 50 μ L of Nafion) to form a homogeneous suspension. Then the suspension was drop casted onto CC with similar mass loading to that of the CoS₂ NTA. The samples were dried at room temperature before test.

Materials Characterization

Samples were characterized using Scanning Electron Microscopy (SEM, Zeiss, 5.0-20.0 kV), Transmission Electron Microscopy (TEM, JEOL-2100F), X-ray photoelectron spectroscopy (XPS, AXIS Ultra), and X-Ray Diffraction (XRD, Bruker D8 diffractometer). The mass of the electrode materials was also recorded by an AX/MX/UMX Balance (METTLER TOLEDO, maximum=5.1 g; delta= 0.001 mg). Scanning Transmission Electron Microscopy (STEM) and EDX studies were conducted using a JEOL ARM200F atomic resolution analytical electron microscope equipped with a cold field-emission gun and a new ASCOR 5th order aberration corrector.

Electrochemical Characterization

Electrochemical measurements were conducted using Solartron 1470E at room temperature. (a) The OER and HER catalytic activities were tested in a standard threeelectrode system in 1 M KOH solution (PH=14), using a Pt plate (or a carbon plate) and SCE as the counter and reference electrode, respectively. Catalysts on carbon cloth were directly used as the working electrode. The polarization curves were measured at 5 mV s⁻¹ and iR corrected, and all the measured potentials were referred to a reversible hydrogen electrode (RHE) using the following equation: E(RHE)=E(SCE)+0.0592*pH+0.241. EIS measurements were carried out by applying an AC voltage with 5 mV amplitude in a frequency range from 0.1 Hz to 100 kHz at open circuit potential. The electrochemical double-layer capacitance (C_{dl}) was determined from the CV curves measured in a potential range without redox process by: $C_{dl}=I/v$, where I is the charging current (mA cm⁻²), and v is the scan rate (mV s⁻¹). The electrochemical stability was tested under constant voltage. (b) The overall water splitting was carried out in a two-electrode system in 1 M KOH solution (PH=14). The polarization curve was recorded at a scan rate of 5 mV s⁻¹. The electrochemical stability was tested under constant voltage.

reaction time with TAA, showing wire-in-tube structures.

Fig. S3. SEM images of Co-MOF arrays on carbon cloth with 5 h reaction time with TAA, showing the structures has been collapsed.

Fig. S4. TEM images of (a) wire-like Co-MOF, (b-c) Co-MOF arrays on carbon cloth with 3 h reaction time with TAA, (d) a typical part of a CoS_2 nanotube.

Fig. S5. (a-c) SEM and (d-e) TEM images of Co₃O₄ nanowires on carbon cloth.

Fig. S6. (a) CV and (b) Plot of current density (@1.175 V vs RHE) vs scan rates of CoS_2 NTA/CC. (c) CV and (d) Plot of current density (@1.175 V vs RHE) vs scan rates of Co_3O_4 NWA/CC. (e) Nyquist plots of CoS_2 NTA and Co_3O_4 NWA.

Table S1. Summary of recent reported highly active **OER** catalysts in 1 M KOH or NaOH electrolyte.

Catalyst	Substrate	Mass	Current	Potential	Tafel	Refere
		loading	density	(V vs.	Slope	nce
		$(mg cm^{-2})$	$(mA cm^{-2})$	RHE)	$(mV dec^{-1})$	
CoS ₂ NTA	Carbon	1.2	10	1.506	81	Curent
	cloth					work
N-doped carbon	Glassy	0.2	10	1.60	93	1
nanotube	carbon					
frameworks	(GC)/powde					
	r					
CoP _x	GC/powder	0.283	10	1.549	52	2
nanoparticles						
embedded in N-						
doped carbon						
CoMnP	GC/powder	0.284	10	1.56	61	3
nanoparticles						
Cobalt-based	GC/powder	0.285	10	1.52	53	4
borate						
nanosheets/						
graphene						
Co ₃ O ₄ /NiCo ₂ O ₄	Ni	1	10	1.57	88	5
double-shelled	foam/powde					
nanocages	r					
NiCo ₂ O ₄	Ni	1	10	1.52	53	6
Hollow	foam/powde					
Microcuboids	r					
Surface	GC/powder	0.71	10	1.55	71	7
Oxidized CoP						
Nanorods						0
Co/CoP	GC/powder	0.22	10	1.57	79.5	8
NiCo LDH	carbon	0.17	10	1.597	40	9
nanosheets	paper		10	1.50	- 0	10
Co_3O_4 -Carbon	Cu foil	0.2	10	1.52	70	10
Nanowire Arrays			1.50	1.50	0.4	11
Hollow Co ₃ O ₄	N1 foam	N.A.	150	1.59	84	11
Microtube						
Arrays	0.1	0.22	10	1.526	70	12
Carbon tubes/	Carbon	0.32	10	1.536	12	12
cobalt-sulfide	paper	(Co-S)	20	1.5	72.0	12
$N_{18}P_3$	Ni foam	N.A.	30	1.5	73.2	15
$\frac{MoS_2/N_{13}S_2}{N_{13}S_2}$	Ni toam	9.7	10	1.448	88	14
NICOP	Ni toam	1.6	10	1.51	87	15
NiFe LDH	Ni foam	N.A.	10	1.47	N.A.	10
$Co_9S_8(a)MoS_2/C$	GC/powder	0.212	10	1.66	61	1/
NFs		0.0-	1.0	1		10
N1CoP/C	GC/powder	0.05	10	1.56	96	18
N1-Mo/Cu	Cu foam	2.17	20	1.51	66	19
nanowires						

Catalyst	Substrate	Mass	Current	Potential	Tafel	Refere
		loading	density	(V vs.	Slope	nce
		(mg cm^{-2})	$(mA cm^{-2})$	RHE)	$(mV dec^{-1})$	
CoS ₂ NTA	Carbon	1.2	-10	-0.193	88	Curent
	cloth					work
CoP _x	GC/powder	0.283	-10	-0.145	51	2
nanoparticles						
embedded in N-						
doped carbon						
NiCo ₂ O ₄	Ni	1	-10	-0.110	49.7	6
Hollow	foam/powd					
Microcuboids	er					
Co/CoP	GC/powder	0.22	-10	-0.253	73.8	8
$Co_9S_8@MoS_2/C$	GC/powder	0.212	-10	-0.19	110	17
NFs						
Carbon tubes/	Carbon	0.32(Co-S)	-10	-0.19	131	12
cobalt-sulfide	paper					
Hollow Co ₃ O ₄	Ni foam	N.A.	-20	-0.19	98	11
Microtube						
Arrays						
Ni ₈ P ₃	Ni foam	N.A.	-10	-0.13	58.5	13
MoS ₂ /Ni ₃ S ₂	Ni foam	9.7	-10	-0.11	83	14
NiCoP	Ni foam	1.6	-10	-0.032	37	15
Ni _{1-x} Co _x Se ₂	Ni foam	2.16	-10	-0.085	52	20
mesoporous						
nanosheet						
NiFe LDH	Ni foam	N.A.	-10	-0.21	N.A.	16
CoN _x /C	GC/powder	2	-10	-0.17	75	21
Cobalt	GC/powder	0.28	-10	-0.37	N.A.	22
embedded						
nitrogen-rich						
carbon						
nanotubes						
FeP nanorod	Carbon	1.5	-10	-0.218	146	23
arrays	cloth					
CoP nanowire	Carbon	0.92	-10	-0.209	129	24
arrays	Cloth					
Ni–Mo/Cu	Cu foam	2.17	-10	-0.115	107	19
nanowires						
Cu ₃ P	Ni foam	0.25	-10	-0.13	83	25

Table S2. Summary of recent reported highly active HER catalysts in 1 M KOH electrolyte.

Catalyst	Substrate	Mass loading (mg cm ⁻²)	Current density (mA cm ⁻²)	Voltage	Electrolyte	Referen ce
CoS ₂ NTA	Carbon cloth	1.2	10	1.67	1 M KOH	Curent work
Surface Oxidized CoP Nanorods	titanium sheet/pow der	5	10	1.587	1 M KOH	7
NiCo ₂ O ₄ Hollow Microcuboi ds	Ni foam/pow der	1	10	1.65	1 M NaOH	6
Hollow Co ₃ O ₄ Microtube Arrays	Ni foam	N.A.	10	1.63	1 M KOH	11
Carbon tubes/ cobalt- sulfide	Carbon paper	0.32(Co-S)	10	1.743	1 M KOH	12
Ni ₈ P ₃	Ni foam	N.A.	10	1.61	1 M KOH	13
MoS ₂ /Ni ₃ S ₂	Ni foam	9.7	10	1.56	1 M KOH	14
NiCoP	Ni foam	1.6	10	1.58	1 M KOH	15
NiFe LDH	Ni foam	N.A.	10	1.7	1 M NaOH	16
Co/CoP	GC/powde r	5	10	1.45	1 M KOH	8
Ni–Mo/Cu nanowires	Cu foam	2.17	10	1.61	1 M KOH	19

Table S3. Summary of recent reported representative of highly active **bifunctional** catalysts for overall water-splitting

References:

1. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X., A metal–organic framework-derived bifunctional oxygen electrocatalyst. *Nature Energy* **2016**, *1*, 15006.

2. You, B.; Jiang, N.; Sheng, M.; Gul, S.; Yano, J.; Sun, Y., High-Performance Overall

Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks. *Chem. Mater.* **2015**, *27* (22), 7636-7642.

3. Li, D.; Baydoun, H.; Verani, C. N.; Brock, S. L., Efficient Water Oxidation Using CoMnP Nanoparticles. *J. Am. Chem. Soc.* **2016**, *138* (12), 4006-4009.

4. Chen, P.; Xu, K.; Zhou, T.; Tong, Y.; Wu, J.; Cheng, H.; Lu, X.; Ding, H.; Wu, C.; Xie, Y., Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions. *Angew. Chem. Int. Ed.* **2016**, *55* (7), 2488-2492.

5. Hu, H.; Guan, B.; Xia, B.; Lou, X. W., Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. *J. Am. Chem. Soc.* **2015**, *137* (16), 5590-5595.

6. Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z., Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting. *Angew. Chem. Int. Ed.* **2016**, *55* (21), 6290-6294.

7. Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W., Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution. *ACS Catalysis* **2015**, *5* (11), 6874-6878.

8. Xue, Z.-H.; Su, H.; Yu, Q.-Y.; Zhang, B.; Wang, H.-H.; Li, X.-H.; Chen, J.-S., Janus Co/CoP Nanoparticles as Efficient Mott–Schottky Electrocatalysts for Overall Water Splitting in Wide pH Range. *Adv. Energy Mater.* **2017**, *7*, 1602355.

9. Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S., Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. *Nano Lett.* **2015**, *15* (2), 1421-1427.

10. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z., Metal–Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. *J. Am. Chem. Soc.* **2014**, *136* (39), 13925-13931.

11. Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z., Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis. *Angew. Chem. Int. Ed.* **2016**, *56* (24), 1324–1328.

12. Wang, J.; Zhong, H.-x.; Wang, Z.-l.; Meng, F.-l.; Zhang, X.-b., Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting. *ACS Nano* **2016**, *10* (2), 2342-2348.

13. Chen, G.-F.; Ma, T. Y.; Liu, Z.-Q.; Li, N.; Su, Y.-Z.; Davey, K.; Qiao, S.-Z., Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting. *Adv. Funct. Mater.* **2016**, *26* (19), 3314-3323.

14. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X., Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. *Angewandte Chemie* **2016**, *128* (23), 6814-6819.

15. Liang, H.; Gandi, A. N.; Anjum, D. H.; Wang, X.; Schwingenschlögl, U.; Alshareef, H. N., Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. *Nano Lett.* **2016**.

16. Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. *Science* **2014**, *345* (6204), 1593-1596.

17. Zhu, H.; Zhang, J.; Yanzhang, R.; Du, M.; Wang, Q.; Gao, G.; Wu, J.; Wu, G.; Zhang, M.; Liu, B.; Yao, J.; Zhang, X., When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. *Adv. Mater.* **2015**, *27* (32), 4752-4759.

18. He, P.; Yu, X.-Y.; Lou, X. W., Carbon-Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. *Angew. Chem. Int. Ed.* **2017**, *56* (14), 3897–3900.

19. Zhao, S.; Huang, J.; Liu, Y.; Shen, J.; Wang, H.; Yang, X.; Zhu, Y.; Li, C., Multimetallic Ni-Mo/Cu nanowires as nonprecious and efficient full water splitting catalyst. *J. Mater. Chem. A* **2017**, *5* (8), 4207-4214.

20. Liu, B.; Zhao, Y.-F.; Peng, H.-Q.; Zhang, Z.-Y.; Sit, C.-K.; Yuen, M.-F.; Zhang, T.-R.; Lee, C.-S.; Zhang, W.-J., Nickel–Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. *Adv. Mater.* **2017**, n/a-n/a.

21. Liang, H.-W.; Brüller, S.; Dong, R.; Zhang, J.; Feng, X.; Müllen, K., Molecular metal– Nx centres in porous carbon for electrocatalytic hydrogen evolution. *Nature Communications* **2015**, *6*, 7992.

22. Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T., Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values. *Angew. Chem. Int. Ed.* **2014**, *53* (17), 4372-4376.

23. Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; Luo, Y., Self-Supported FeP Nanorod Arrays: A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity. *ACS Catalysis* **2014**, *4* (11), 4065-4069.

24. Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X., Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. *J. Am. Chem. Soc.* **2014**, *136* (21), 7587-7590.

25. Hao, J.; Yang, W.; Huang, Z.; Zhang, C., Superhydrophilic and Superaerophobic Copper Phosphide Microsheets for Efficient Electrocatalytic Hydrogen and Oxygen Evolution. *Advanced Materials Interfaces* **2016**, *3* (16), 1600236.