Electronic Supplementary Information

A simple but effective fluorescent probe for the detection of bisulfite

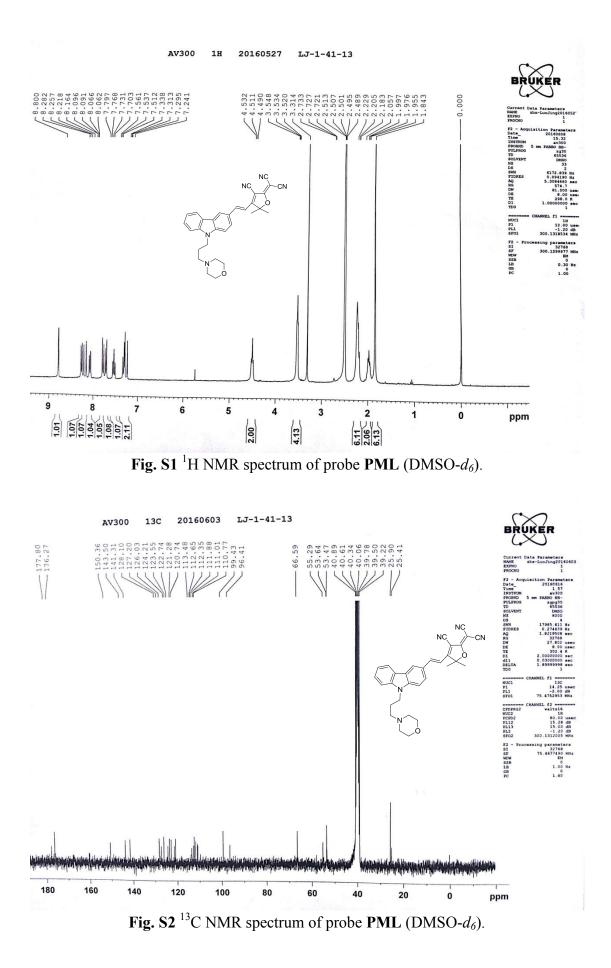
Jing Luo, Guangjie Song, Xujiao Xing, Shili Shen, Yanqing Ge, Xiaoqun Cao*

School of Chemistry and Pharmaceutical Engineering, Taishan Medical University,

Tai'an 271000, PR China.

*Correspondence to: Prof. Xiaoqun Cao

Tel: 0086-538-6236195.


Email address: xqcao@tsmc.edu.cn

Calculation of the detection limit (LOD)

$$LOD = 3\sigma/k$$

Where, σ is the standard deviation of the blank solution and k is the slope of the linear calibration plot between the fluorescence emission intensity and the concentration of hypochlorite.

The concentration of PML and HSO₃⁻ were the same and we used the formula to calculate the rate constant. Formula: $dx/dt=k(c-x)^2$, x is the concentration of the reactants consumed when the time was t, c is the initial concentration, k is the rate constant. Integral to get a new formula x/c(c-x)=kt. We measured the fluorescence intensity and the fluorescence intensity is proportional to the concentration. Therefore, as long as measured by the experiment of when the value of x at different time t, it is a straight line which proved that it is a second-order reaction. The rate constant k can be calculated from formula. $k = 1.457 \times 10^5 \text{ M}^{-1}\text{min}^{-1}$.

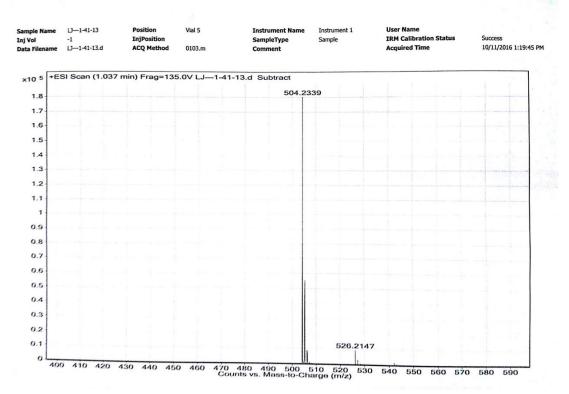


Fig. S3 MS spectrum of probe PML.

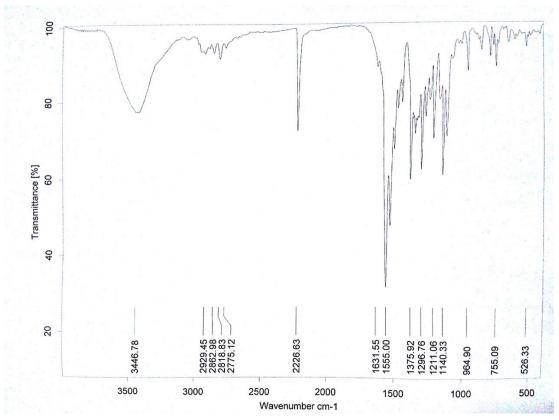
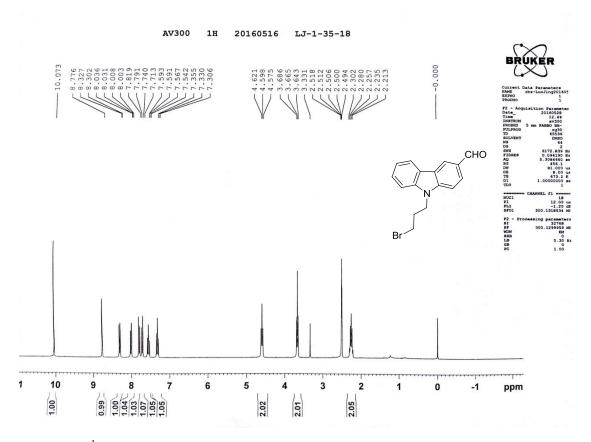



Fig. S4 IR spectrum of probe PML.

Fig. S5 ¹H NMR spectrum of 9-(3-bromopropyl)-9H-carbazole-3-carbaldehyde.

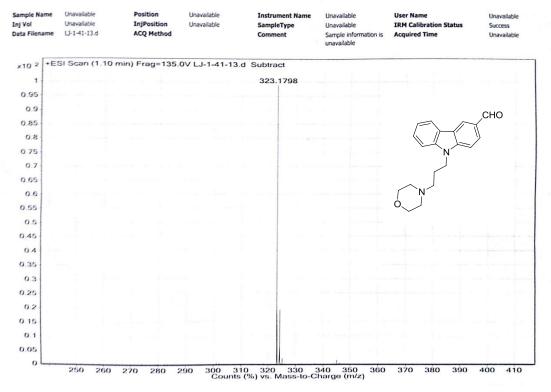
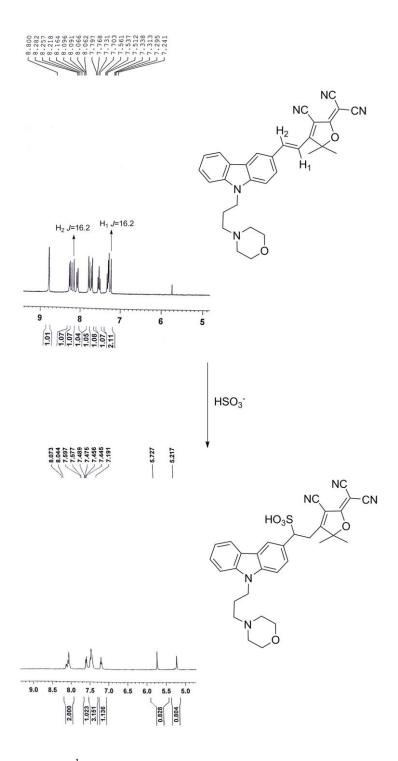
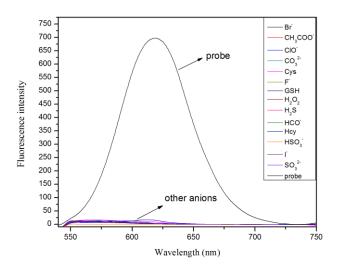


Fig. S6 MS spectrum of compound 4




Fig. S7 ¹H NMR titration process of PML and HSO₃⁻

Probe structures	LOD/ μ M	$\lambda ex/nm$	λ em/nm	Response time	e Ref.
N BF ₄ O BF ₄	0.61	465 nm	510/560 nm	5 min	1
	1.57	380 nm	414/554 nm	60 min	2
	58	538 nm	570/647 nm	5 min	3
	0.23	425 nm	488/630 nm	30 min	4
	0.058	415 nm	458/605 nm	60 min	5
	1.76	340 nm	575 nm	2 min	6
	0.1	410 nm	530/582 nm	2 min	7
	2.08	515 nm	618 nm	10 min	This work

Table. S1 Comparison of fluorescent probes for $HSO_3^{-7}/SO_3^{-2^{-1}}$.

Reference:

- Z. Chen, F. Z. Chen, Y. C. Sun, H. Liu, H. P. Liu, H. P. He, X. H. Zhang, S. F. Wang, *RSC*. Adv., 2017, 7, 2573-2577.
- 2. P. Hou, S. Chen, K. Voitchovsky, X. Z. Song, Luminescence., 2013, 29, 749-753.
- X. F. Gu, C. H. Liu, Y. C. Zhu, Y. Z. Zhu, J. Agric. Food. Chem., 2011, 59, 11935-11939.
- 4. Q. Sun, W. B. Zhang, J. H. Qian, Talanta., 2017, 162, 107-113.
- 5. X. Dai, T. Zhang, Z. F. Du, X. J. Cao, M. Y. Chen, S. W. Hu, J. Y. Miao, B. X. Zhao, *Anal. Chim. Acta.*, 2015, 888, 138-145.
- 6. J. B. Chao, Y. Zhang, H. F. Wang, Y. B. Zhang, F. J. Huo, C. X. Yin, L. P. Qin, Y. Wang, *Sens. Actuators, B.*, 2013, 188, 200-206.
- D. P. Li, Z. Y. Wang, X. J. Cao, J. Cui, X. Wang, H. Z. Cui, J. Y. Miao, B. X. Zhao, Chem. Commun., 2016, 52, 2760-2763.

Fig. S8 Fluorescence responses of probe **PML** (5 μ M) toward HSO₃⁻ (18 eq.) with different anions.

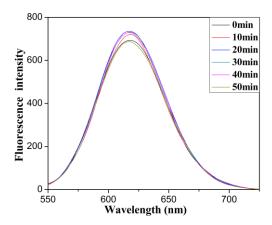


Fig. S9 The stability of fluorescence probe PML.