Electronic Supporting Information:

Experimental and theoretical study on the nucleofugality ratio in the aminolysis reactions of *O*-(4-cyanophenyl) *O*-(3-nitrophenyl) thionocarbonate with amines in aqueous ethanol.

Table of contents

Figure S1. HPLC analysis of the reaction of 1 with morpholine in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.	S4
Table S-1 . Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -(4-cyanophenyl) thiocarbonate (1) with piperidine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.	\$5
Table S-2 . Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -(4-cyanophenyl) thiocarbonate (1) with piperazine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.	S5
Table S-3 . Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -(4-cyanophenyl) thiocarbonate (1) with 2-(hydroxyethyl)piperazine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.	S 6
Table S-4. Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -(4-cyanophenyl) thiocarbonate (1) with morpholine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.	S6
Table S-5 . Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -(4-cyanophenyl) thiocarbonate (1) with N-formylpiperazine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.	S7
Table S-6 . Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -(4-cyanophenyl) thiocarbonate (1) with phenylendiamine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.	87
Table S-7 . Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -(4-cyanophenyl) thiocarbonate (1) with 4-methoxyaniline, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.	S8
Table S-8. Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -(4-cyanophenyl) thiocarbonate (1) with 4-methylaniline, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.	S8

Table S-9. Experimental conditions and k_{obs} values for the reactions O-(3-nitrophenyl) O-	S9
(4-cvanophenvl) thiocarbonate (1) with aniline, in aqueous ethanol 44wt, % 25.0 °C, $\mu =$	
0.2 M in KCl borate buffer 0.07M	
Table S-10. Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -	S9
(4-cyanophenyl) thiocarbonate (1) with 3-amino acetophenone, in aqueous ethanol 44wt.	
%, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.	
Fatimation of T K of T ⁺	S10
Estimation of p_{A_a} of 1^-	510
Figure S2. Corrected Bronsted plot for the reactions of 1 with SAA. The k_1 values, as well	S11
as those of the pK_a of the conjugate acids of these amines, were statistically corrected with	
q = 2 for piperazine ($q = 1$ for all the other SAA) and $p = 2$ for all the conjugate acids of	
the amines.	
Figure S3. Corrected Bronsted plot for the reactions of 1 with anilines. The k_N values, as	S12
well as those of the pK_a of the conjugate acids of these anilines, were statistically corrected	
with $q = 2$ for 4-phenylendiamine ($q = 1$ for all the other anilines) and $p = 3$ for all the	
conjugate acids of the anilines.	
Table S-11. Experimental conditions and k_{obs} values for the reactions <i>O</i> -(3-nitrophenyl) <i>O</i> -	S13
(4-cyanophenyl) thiocarbonate (1) with aniline, in aqueous ethanol 44wt. %, 25.0 °C, μ =	
0.2 M in KCl, borate buffer 0.14 and 0.21M.	
Figure S4. Dependence of $k_{\rm N}$ values with buffer concentration.	S14
Figure S5. Energy profile, of systems containing T ⁻ , as a function of the explicit water	S15
molecules included.	
Figure S6. Structure of the TS2 for the departure of 4-CNPO ⁻ and 3-NPO ⁻ with a)	S16
assistance of one explicit water molecule, b) assistance of three explicit water assistance	
water molecules.	
Figure S7. Structure of the TS2 for the departure of 4-CNPO ⁻ (left) and 3-NPO ⁻ (right)	S17
with a) the assistance of one explicit water molecule and one explicit ethanol molecule, b)	
the assistance of two explicit ethanol molecules	010
Table S-12. Energy gap (kcal mol ⁻¹) of 1S2 as a function of the number of assisting water	818
Table S 13 Cartesian apardinates anarray (u.a.) and number of imaginary frequencies	C10
(NIMAG) in the Transition State (TS2) for the departure of 4 CNPO: without explicit water	510
molecules	
Table S-14. Cartesian coordinates energy (u a) and number of imaginary frequencies	S20
(NIMAG) in the Transition State (TS2) for the departure of 3NPO ⁻ without explicit water	520
molecules.	
Table S-15. Cartesian coordinates energy (u.a.) and number of imaginary frequencies	S22
(NIMAG) in the Transition State (TS2) for the departure of 4CNPO ⁻ with one explicit water	

molecule	
Table S-16. Cartesian coordinates energy (u.a.) and number of imaginary frequencies (NIMAG) in the Transition State (TS2) for the departure of 3-NPO ⁻ with one explicit water molecule	S24
Table S-17. Cartesian coordinates energy (u.a.) and number of imaginary frequencies (NIMAG) in the Transition State (TS2) for the departure of 4-CNPO ⁻ with two explicit water molecules.	S26
Table S-18. Cartesian coordinates energy (u.a.) and number of imaginary frequencies (NIMAG) in the Transition State (TS2) for the departure of 3-NPO ⁻ with two explicit water molecules.	S28
Table S-19. Cartesian coordinates energy (u.a.) and number of imaginary frequencies (NIMAG) in the Transition State (TS2) for the departure of 4-CNPO ⁻ with three explicit water molecules.	S30
Table S-20. Cartesian coordinates energy (u.a.) and number of imaginary frequencies (NIMAG) in the Transition State (TS2) for the departure of 3-NPO ⁻ with three explicit water molecules.	S32
Table S-21. Cartesian coordinates energy (u.a.) and number of imaginary frequencies (NIMAG) in the Transition State (TS2) for the departure of 4-CNPO ⁻ with four explicit water molecules.	S34
Table S-22. Cartesian coordinates energy (u.a.) and number of imaginary frequencies (NIMAG) in the Transition State (TS2) for the departure of 3-NPO ⁻ with four explicit water molecules.	S36
Table S-23. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) for the departure of 4CNPO ⁻ with one explicit ethanol molecule	S38
Table S-24. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) for the departure of 3NPO ⁻ with one explicit ethanol molecule	S40
Table S-25. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4CNPO ⁻ with one explicit water molecule and one ethanol molecule	S42
Table S-26. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 3NPO ⁻ with one explicit water molecule and one ethanol molecule	S44
Table S-27. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4CNPO ⁻ anion for compound 1 , with two explicit ethanol molecules	S46
Table S-28. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 3NPO ⁻ anion for compound 1 , with two explicit ethanol molecules	S48

Figure S1. HPLC analysis of the reaction of **1** with excess of morpholine at wavelength 250 and 300 nm in red and blue, respectively (see experimental). The number are defined in Scheme 2 in the manuscript.

Table S-1. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with piperidine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.

pH=10.52		pH=10.82	
$F_N = 0.$	333	$F_N = 0$.5
10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$	10 ³ [Amine] _{tot} /mol l ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$
1.15	5.69	1.15	7.74
2.31	9.71	2.31	15.4
3.46	14.0	3.46	25.9
4.61	18.6	4.61	37.3
5.77	22.8	5.77	43.0
6.92	25.5	6.92	50.9
		8.07	57.9

Table S-2. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with piperazine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.

pH=9	pH=9.71 pH=10.01		.01
$F_N = 0.5$ $F_N = 0.666$		566	
10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$	10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$
1.06	3.38	1.06	5.29
2.11	9.25	2.11	8.27
3.17	12.6	3.17	13.3
4.23	15.0	4.23	24.3
5.28	21.0	5.28	26.8
6.34	30.2	6.34	32.6

Table S-3. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with 2-(hydroxyethyl)piperazine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.

pH=9.09		pH=9.39	
$F_{N} = 0.5$		$F_{N} = 0.0$	566
10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$	10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$
1.39	1.30	1.20	2.00
2.77	3.20	2.41	4.34
4.16	5.90	3.61	8.58
5.54	8.80	4.82	11.6
6.93	12.2	6.02	14.5
8.31	14.6	7.23	16.2
9.07	17.0	8.43	25.4

Table S-4. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with morpholine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.

pH=8.48		pH=8.78	
F _N =0.5		F _N =0.666	
10^3 [Amine] _{tot} /mol l ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$	10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$
0.596	0.488	0.596	0.645
1.19	0.988	1.19	1.30
2.38	2.28	2.38	3.30
3.57	3.74	3.57	4.98
4.77	5.38	4.77	7.71
5.36	7.83	5.36	7.50
5.96	9.04	5.96	8.98
8.34	11.5	8.34	12.6
10.7	14.9	10.7	18.5

Table S-5. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with N-formylpiperazine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl.

pH= 7.33 F _N =0.333		pH=7.63 F _N =0.5	
10 ² [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$	10 ² [Amine] _{tot} /mol l ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$
0.0792	0.0520	0.080	0.0387
0.198	0.100	0.200	0.140
0.317	0.169	0.292	0.692
0.429	0.707	0.320	0.325
0.554	0.326	0.440	0.539
0.673	0.510	0.560	0.827
0.792	0.884	0.584	1.83
0.861	1.51	0.876	3.10
1.29	2.69	1.17	4.16
1.72	3.97	1.46	6.83
2.15	5.82	1.75	8.97
2.58	8.00	3.04	16.2
6.09	22.0	4.06	22.7
7.62	32.5	5.08	30.6

Table S-6. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with phenylendiamine, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.

pH= 8.4		pH=9.8	
10 ³ [Amine] _{tot} /mol l ⁻¹	$10^{3}k_{\rm obs}/{\rm s}^{-1}$	10 ³ [Amine] _{tot} /mol l ⁻¹	$10^{3}k_{\rm obs}/{\rm s}^{-1}$
1.60	2.11	1.60	2.85
3.00	3.87	3.00	4.70
6.00	8.04	6.00	9.76
9.50	14.4	9.50	15.2
16.0	13.5	11.0	20.4
		13.5	23.9
		16.0	27.5

Table S-7. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with 4-methoxyaniline, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.

pH= 8.4		pH=9.8	
10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$	10^{3} [Amine] _{tot} /mol l ⁻¹	$10^{3}k_{\rm obs}/{\rm s}^{-1}$
1.60	0.583	1.60	0.599
3.00	1.06	3.00	1.08
6.00	2.14	6.00	2.16
9.50	3.41	9.50	3.94
11.0	3.94	11.0	4.17
13.5	4.80	13.5	5.09
16.0	6.13	16.0	6.83

Table S-8. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with 4-methylaniline, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.

pH= 8.4		pH=9.8	
10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^{3}k_{\rm obs}/{\rm s}^{-1}$	10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^{3}k_{\rm obs}/{\rm s}^{-1}$
1.60	0.496	1.60	0.508
3.00	0.728	3.00	0.725
6.00	1.35	6.00	1.33
9.50	2.20	9.50	2.11
		11.0	2.72
		13.5	3.12
		16.0	3.60

Table S-9. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with aniline, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.

pH= 8.4 pH=9.8		.8	
10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^3 k_{\rm obs}/{\rm s}^{-1}$	10 ³ [Amine] _{tot} /mol 1 ⁻¹	$10^{3}k_{\rm obs}/{\rm s}^{-1}$
3.00	0.318	1.60	0.134
6.00	0.573	3.00	0.271
9.50	0.824	6.00	0.506
11.0	0.881	9.50	0.787
13.5	1.15	11.0	0.932
16.0	1.19	13.5	1.15
35.0	2.63	16.0	1.35

Table S-10. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with 3-amino acetophenone, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.07M.

pH= 8.	4	pH=9.8		
10 ² [Amine] _{tot} /mol 1 ⁻¹	$10^4 k_{\rm obs} / {\rm s}^{-1}$	$10^{2} [\text{Amine}]_{\text{tot}} / \text{mol } 1^{-1}$	$10^4 k_{\rm obs} / {\rm s}^{-1}$	
0.95	2.67	0.95	2.42	
1.10	2.76	1.10	2.73	
1.35	2.70	1.35	3.02	
1.60	3.06	1.60	3.18	
2.00	4.20	2.00	3.84	
		2.50	4.69	

Estimation of pK_a of T^{\pm}

The p K_a of intermediate \mathbf{T}^{\pm} can be estimated by Jencks' method (eqn. 1),¹ where σ_I and σ_I (ref) are the Hammett inductive substituent constants of the varying group and of the reference, respectively. The Hammett inductive equilibrium constant (ρ_I) for the p K_a of the tetrahedral intermediates has been estimated as $\rho_I = -9.2$.²

$$pK_a - pK_a(ref) = \rho_I (\sigma_I - \sigma_I(ref))$$
(1)

We consider as reference the reaction of 4-methylphenyl 3-nitrophenyl thionocarbonate with SAA, in which the pK_a of the tetrahedral intermediate formed was estimated as 7.1 units lower than that of the respective amine.³ Substitution of 4-methylphenyl in this intermediate by 4-cyanophenyl yields the intermediate T[±] in Scheme S1.

To our knowledge, the σ_{I} value for 4-cyanophenoxy has not been reported. In view of the greater electron-withdrawing effect of the 4-cyano group compared to that of 4-methyl, we can assume ($\sigma_{I} - \sigma_{I}(ref) > 0$ in eqn 1, and considering $pK_{a}(ref) = 7.1$ and $\rho_{I} = -9.2$, a pK_{a} value of intermediate T^{\pm} can be estimated as more than 7.1 units lower than that of the corresponding conjugate acid of the amine.

- Sayer, J. M.; Jencks, W. P. J. Am. Chem. Soc. 1973, 95, 5637-5649. Fox, J. P.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 1436-1449.
- 2. Taylor, P. J. J. Chem. Soc., Perkin Trans. 2 1993, 1423-1427.
- E. A. Castro, P. Garcia, L. Leandro, N. Quesieh, A. Rebolledo, J. G. Santos. J. Org. Chem. 2000, 65, 9047-9053.

Figure S2. Corrected Bronsted plot for the reactions of **1** with SA amines. The k_1 values, as well as those of the pK_a of the conjugate acids of these amines, were statistically corrected with q = 2 for piperazine (q = 1 for all the other SA amines) and p = 2 for all the conjugate acids of the amines.

Figure S3. Corrected Bronsted plot for the reactions of 1 with anilines. The k_N values, as well as those of the pK_a of the conjugate acids of these anilines, were statistically corrected with q = 2 for 4-phenylendiamine (q = 1 for all the other anilines) and p = 3 for all the conjugate acids of the anilines.

Table S-11. Experimental conditions and k_{obs} values for the reactions *O*-(3-nitrophenyl) *O*-(4-cyanophenyl) thiocarbonate (1) with aniline, in aqueous ethanol 44wt. %, 25.0 °C, $\mu = 0.2$ M in KCl, borate buffer 0.14 and 0.21M.

	$k_{\rm obs}/{\rm s}^{-1}$			
10 ² [aniline]/mol l ⁻¹	[Buffer]=0.14mol l ⁻¹	$[Buffer]=0.21 \text{ mol } l^{-1}$		
0.950	1.27	2.05		
1.10	1.55	1.96		
1.35	1.84	2.50		
1.60	2.14	2.64		
2.50	3.38	4.08		
3.50	4.28	5.70		
4.50	5.05	7.15		

Figure S4. Dependence of $k_{\rm N}$ values with buffer concentration.

Figure S5. Energy profile, of systems containing T⁻, as a function of the explicit water molecules included.

Figure S6. Structure of the TS2 for the departure of 4-CNPO⁻ and 3-NPO⁻ with a) assistance of one explicit water molecule, b) assistance of three explicit water assistance water molecules.

Figure S7. Structure of the TS2 for the departure of 4-CNPO⁻ (left) and 3-NPO⁻ (right) with a) the assistance of one explicit water molecule and one explicit ethanol molecule, b) the assistance of two explicit ethanol molecules

	Departure	0	1	2	3		1W+1Eth*
Implicit	4CNPO-	1.98	4.58	12.64	4.79	Implicit	7.87
water	3NPO-	1.27	4.12	12.94	5.58	Water	7.75
Explicit	4CNPO-		16.24	13.34		Implicit	7.93
Ethanol	3NPO-		10.09	7.64		ethanol	13.24

Table S12. Energy gap (kcal mol⁻¹) of TS2 as a function of the number of assisting water and ethanol molecules.

*1W+1Eth= one explicit water molecule and one explicit ethanol molecule

Table S-13. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4-CNPO⁻ anion for compound 1 without explicit water molecules, calculated using WB97XD/6-311++G(d,p) level theory

Center Number		Atomic Number X	Coordinate Y	es (Angstroms) Z	
1	6	0 002430	1 203353	0 551256	
2	16	-0.300169	0.420769	2.052532	
3	8	-0.154769	0.081758	-0.848898	
4	8	1.322155	1.572052	0.235506	
5	6	-0.764395	-1.077473	-0.801306	
6	6	-2.022533	-1.275255	-0.200520	
7	6	-0.154013	-2.193116	-1.409619	
8	6	-2.604330	-2.530589	-0.242903	
9	1	-2.529517	-0.462497	0.294351	
10	6	-0.770559	-3.435516	-1.439687	
11	1	0.820338	-2.044034	-1.862030	
12	6	-2.011475	-3.631525	-0.848020	
13	1	-0.274197	-4.268902	-1.925913	
14	1	-2.508792	-4.590639	-0.847485	
15	6	2.378172	0.741475	0.238647	
16	6	3.595384	1.372163	-0.045620	
17	6	2.354219	-0.635971	0.477586	
18	6	4.769160	0.648623	-0.106339	
19	1	3.591057	2.441542	-0.218788	

20	6	3.533475	-1.356065	0.414050	
21	1	1.428294	-1.127385	0.728827	
22	6	4.749514	-0.731056	0.121382	
23	1	5.706156	1.145813	-0.328788	
24	1	3.511596	-2.424225	0.597192	
25	7	-3.929986	-2.704642	0.374797	
26	8	-4.383439	-3.835777	0.449091	
27	8	-4.515911	-1.716928	0.776453	
28	6	5.960591	-1.488048	0.057454	
29	7	6.941685	-2.093389	0.002767	
30	6	-2.687542	3.746537	0.438212	
31	6	-2.185552	2.315074	0.518145	
32	6	-0.589587	2.832985	-1.187020	
33	6	-1.133049	4.252368	-1.223830	
34	1	-2.292900	1.928154	1.531251	
35	1	-2.780017	1.685497	-0.164036	
36	1	-2.164547	4.356377	1.190451	
37	1	-3.760979	3.784502	0.633259	
38	1	0.471086	2.838015	-1.431102	
39	1	-1.109605	2.208799	-1.927011	
40	1	-1.074032	4.656332	-2.237062	
41	1	-0.535547	4.888778	-0.552362	
42	7	-0.782888	2.285925	0.150195	
43	8	-2.495142	4.309962	-0.848000	

Total Energy (a.u.) =-1633.954009; NIMAG = i252.36

Center		Atomic	Coordinate	es (Angstroms)	7
Number		Number	Х	Y	L
1	6	0.002430	1.203353	0.551256	
2	16	-0.300169	0.420769	2.052532	
3	8	-0.154769	0.081758	-0.848898	
4	8	1.322155	1.572052	0.235506	
5	6	-0.764395	-1.077473	-0.801306	
6	6	-2.022533	-1.275255	-0.200520	
7	6	-0.154013	-2.193116	-1.409619	
8	6	-2.604330	-2.530589	-0.242903	
9	1	-2.529517	-0.462497	0.294351	
10	6	-0.770559	-3.435516	-1.439687	
11	1	0.820338	-2.044034	-1.862030	
12	6	-2.011475	-3.631525	-0.848020	
13	1	-0.274197	-4.268902	-1.925913	
14	1	-2.508792	-4.590639	-0.847485	
15	6	2.378172	0.741475	0.238647	
16	6	3.595384	1.372163	-0.045620	
17	6	2.354219	-0.635971	0.477586	
18	6	4.769160	0.648623	-0.106339	
19	1	3.591057	2.441542	-0.218788	
20	6	3.533475	-1.356065	0.414050	
21	1	1.428294	-1.127385	0.728827	
22	6	4.749514	-0.731056	0.121382	
23	1	5.706156	1.145813	-0.328788	
24	1	3.511596	-2.424225	0.597192	
25	7	-3.929986	-2.704642	0.374797	
26	8	-4.383439	-3.835777	0.449091	
27	8	-4.515911	-1.716928	0.776453	
28	6	5.960591	-1.488048	0.057454	
29	7	6.941685	-2.093389	0.002767	
30	6	-2.687542	3.746537	0.438212	
31	6	-2.185552	2.315074	0.518145	
32	6	-0.589587	2.832985	-1.187020	
33	6	-1.133049	4.252368	-1.223830	
34	1	-2.292900	1.928154	1.531251	
35	1	-2.780017	1.685497	-0.164036	
36	1	-2.164547	4.356377	1.190451	
37	1	-3.760979	3.784502	0.633259	
38	1	0.471086	2.838015	-1.431102	
39	1	-1.109605	2.208799	-1.927011	

Table S-14. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of $3-NPO^{-1}$ anion for compound 1, without explicit water molecules, calculated using WB97XD/6-311++G(d,p) level theory

40	1	-1.074032	4.656332	-2.237062
41	1	-0.535547	4.888778	-0.552362
42	7	-0.782888	2.285925	0.150195
43	8	-2.495142	4.309962	-0.848000

Total Energy (a.u.) =-1633.954455; **NIMAG = i232.51**

Table S-15. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4-CNPO⁻ anion for compound 1, with one water molecule, calculated using WB97XD/6-311++G(d,p) level theory

Center		Atomic	Coordinate	es (Angstroms)	
Number		Number	Х	Y	Z
1	(0.070020	1 204004	0 1 45 400	
1	0	0.0/8839	-1.284984	0.145490	
2	10	0.709343	-2.034002	0.988579	
5	ð	0.985/92	-0.39/40/	-0.439008	
4	0	-0.079333	-0.204043	1.381/43	
5	0	2.131190	-0.013428	0.180032	
07	0	5.165110 2.265410	0.308340	-0.003247	
/ 0	0	2.203419	0.155419	1.301319	
0	0	4.300100	0.780777	-0.109973	
9	1	2 162221	0.164/42	-1./34239	
10	1	5.405524 1 424687	0.008387	2.080049	
11	1	1.434007	-0.114102	2.204408	
12	1	4.529505	0.942430	1.230980	
13	1	5.505502	0.722380	1 650045	
14	6	1 587631	0.616052	0.003205	
15	6	-1.36/031	1.510200	0.993203	
10	6	-1.379070	0.663172	-0.073494	
17	6	-2.822932	0.003172	0.447867	
10	1	-0.437278	1 479999	-0.604708	
20	6	-3 801286	1.564715	1 299108	
20	1	-2 995715	-0.037525	2 477956	
21	6	-3 586165	2 445192	0 231924	
22	1	-2 188974	3 089043	-1 271665	
23	1	-4 747644	1 587193	1 828074	
25	7	5 468255	1 136627	-1 009135	
26	8	5 287243	1.036629	-2 208893	
27	8	6 513663	1 512695	-0 508373	
28	6	-4 599056	3 374492	-0 156423	
29	7	-5 417175	4 126610	-0 469634	
30	6	-1.973975	-1.198954	-2.959668	
31	6	-0.701323	-1.516103	-2.187741	
32	6	-2.073779	-2.281048	-0.365632	
33	6	-3.301628	-1.923327	-1.186464	
34	1	-0.352652	-2.532862	-2.434709	
35	1	0.074783	-0.805887	-2.467291	
36	1	-2.241485	-0.145123	-2.788099	
37	1	-1.819897	-1.359439	-4.029134	
38	1	-1.803772	-3.336555	-0.516456	

39	1	-2.279784	-2.137635	0.696210	
40	1	-4.120676	-2.610493	-0.966587	
41	1	-3.618134	-0.897732	-0.944800	
42	7	-0.985072	-1.405230	-0.766295	
43	8	-3.048761	-2.032616	-2.578066	
44	8	-1.608312	-2.054206	3.377991	
45	1	-1.227459	-1.361611	2.812773	
46	1	-1.128070	-2.821236	3.051979	

Total Energy (a.u.) =-1702.439389; NIMAG = i269.25

Center		Atomic	Coordinat	es (Angstroms	
Number		Number	Х	Ŷ	Z
1	6	0.566790	1.195312	0.538019	
2	16	1.210444	1.739397	2.040718	
3	8	-0.071394	-0.459244	0.840782	
4	8	1.458394	0.957804	-0.512442	
5	6	-0.978500	-0.917026	-0.008934	
6	6	-2.202517	-1.401684	0.482582	
7	6	-0.778363	-0.924611	-1.401510	
8	6	-3.152243	-1.873912	-0.408346	
9	1	-2.399684	-1.390597	1.547369	
10	6	-1.758703	-1.392323	-2.264524	
11	1	0.158040	-0.547865	-1.790874	
12	6	-2.966995	-1.878473	-1.784453	
13	1	-1.576780	-1.382390	-3.334015	
14	1	-3.740560	-2.251743	-2.439778	
15	6	2.630113	0.298329	-0.353889	
16	6	3.609402	0.603059	-1.299515	
17	6	2.866022	-0.678150	0.615135	
18	6	4.823070	-0.058958	-1.286659	
19	1	3.400544	1.370125	-2.035175	
20	6	4.083859	-1.334218	0.626425	
21	1	2.099901	-0.912644	1.337586	
22	6	5.070592	-1.034897	-0.318113	
23	1	5.583937	0.180565	-2.019992	
24	1	4.274067	-2.092784	1.376415	
25	7	-4.429242	-2.382193	0.125649	
26	8	-4.589551	-2.385163	1.330290	
27	8	-5.265647	-2.774693	-0.671774	
28	6	6.324852	-1.723573	-0.299882	
29	7	7.337200	-2.276615	-0.292963	
30	6	-2.925162	2.292600	0.087983	
31	6	-1.635558	2.148523	0.878298	
32	6	-0.417816	2.757775	-1.109957	
33	6	-1.751337	2.896174	-1.830328	
34	1	-1.398765	3.085992	1.402404	
35	1	-1.745513	1.365479	1.630294	
36	1	-3.206031	1.318872	-0.339728	
37	1	-3.730984	2.642204	0.735424	
38	1	-0.105767	3.734913	-0.704232	

Table S-16. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 3-NPO⁻ anion for compound 1, with one explicit water molecule, calculated using WB97XD/6-311++G(d,p) level theory

39	1	0.337493	2.418460	-1.816387
40	1	-1.695967	3.685629	-2.583606
41	1	-1.989107	1.942018	-2.325601
42	7	-0.567510	1.786823	-0.039107
43	8	-2.797140	3.251085	-0.950520
44	8	-0.914330	-0.411755	3.535978
45	1	-0.560455	-0.568784	2.644509
46	1	-0.462306	0.408148	3.756355

Total Energy (a.u.) = -1702.443851; NIMAG = i273.41

Table S-17. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4-CNPO⁻ anion for compound 1, with two water molecules, calculated using WB97XD/6-311++G(d,p) level theory

Center Number		Atomic Number	Coordinate X	es (Angstroms) Y	Z
1	6	0.974163	-0.966398	-0.326893	
2	16	0.314928	-0.428335	-1.804894	
3	8	0.272418	-1.802185	0.520366	
4	8	1.086131	0.509242	0.884607	
5	6	-1.023750	-1.504176	0.847024	
6	6	-2.070065	-1.880139	0.016175	
7	6	-1.261527	-0.877068	2.068123	
8	6	-3.363188	-1.599314	0.442313	
9	1	-1.879676	-2.358660	-0.934452	
10	6	-2.570106	-0.616122	2.465319	
11	1	-0.408094	-0.585040	2.668511	
12	6	-3.639522	-0.974603	1.652464	
13	1	-2.755259	-0.115539	3.409460	
14	1	-4.665446	-0.770398	1.930656	
15	6	0.733815	1.733229	0.560251	
16	6	1.687138	2.776652	0.626893	
17	6	-0.582450	2.063560	0.166786	
18	6	1.343174	4.082145	0.329639	
19	1	2.698533	2.526333	0.934249	
20	6	-0.923650	3.368934	-0.146486	
21	1	-1.334231	1.285327	0.122113	
22	6	0.031379	4.393405	-0.066626	
23	1	2.084954	4.872427	0.395329	
24	1	-1.938755	3.598682	-0.454606	
25	7	-4.479322	-1.960094	-0.431458	
26	8	-4.224560	-2.297840	-1.583006	
27	8	-5.612465	-1.908014	0.027235	
28	6	-0.321641	5.746622	-0.374159	
29	7	-0.599284	6.849463	-0.616146	
30	6	4.027849	-3.093700	-0.142060	
31	6	2.585675	-2.766870	-0.504793	
32	6	3.272965	-0.505073	-0.942636	
33	6	4.686598	-0.893241	-0.540886	
34	1	2.409711	-2.979599	-1.573374	
35	1	1.911937	-3.383724	0.092380	
36	1	4.166570	-2.993746	0.947514	
37	1	4.263588	-4.121911	-0.429785	
38	1	3.144496	-0.611854	-2.030288	
39	1	3.078310	0.534888	-0.673863	

40	1	5.414175 -0.318702 -1.119022
41	1	4.839327 -0.692695 0.530645
42	7	2.331337 -1.352402 -0.220117
43	8	4.948904 -2.262288 -0.817304
44	8	-2.905790 0.541591 -2.084897
45	1	-1.959511 0.374596 -1.935940
46	1	-3.251823 -0.309689 -2.371780
47	8	2.887733 -0.484882 2.701048
48	1	2.965818 -1.222073 2.084524
49	1	2.267273 0.073913 2.193007

Total Energy (a.u.) =-1778.506327; **NIMAG = i247.82***

Center A		Atomic	Coordinates (Angstroms)		
Number		Number	Х	Y	Z
1	6	0.974163	-0.966398	-0.326893	
2	16	0.314928	-0.428335	-1.804894	
3	8	0.272418	-1.802185	0.520366	
4	8	1.086131	0.509242	0.884607	
5	6	-1.023750	-1.504176	0.847024	
6	6	-2.070065	-1.880139	0.016175	
7	6	-1.261527	-0.877068	2.068123	
8	6	-3.363188	-1.599313	0.442313	
9	1	-1.879676	-2.358660	-0.934452	
10	6	-2.570106	-0.616122	2.465319	
11	1	-0.408094	-0.585040	2.668511	
12	6	-3.639522	-0.974602	1.652464	
13	1	-2.755259	-0.115539	3.409460	
14	1	-4.665446	-0.770397	1.930656	
15	6	0.733815	1.733229	0.560251	
16	6	1.687138	2.776652	0.626893	
17	6	-0.582450	2.063560	0.166786	
18	6	1.343175	4.082145	0.329639	
19	1	2.698533	2.526333	0.934249	
20	6	-0.923649	3.368934	-0.146486	
21	1	-1.334231	1.285327	0.122113	
22	6	0.031380	4.393405	-0.066626	
23	1	2.084955	4.872427	0.395329	
24	1	-1.938754	3.598682	-0.454606	
25	7	-4.479322	-1.960093	-0.431458	
26	8	-4.224560	-2.297839	-1.583006	
27	8	-5.612465	-1.908013	0.027235	
28	6	-0.321640	5.746622	-0.374159	
29	7	-0.599283	6.849463	-0.616146	
30	6	4.027848	-3.093701	-0.142060	
31	6	2.585674	-2.766870	-0.504793	
32	6	3.272965	-0.505074	-0.942636	
33	6	4.686598	-0.893242	-0.540886	
34	1	2.409710	-2.979599	-1.573374	
35	1	1.911936	-3.383724	0.092380	
36	1	4.166569	-2.993747	0.947514	
37	1	4.263587	-4.121912	-0.429785	
38	1	3.144496	-0.611855	-2.030288	
39	1	3.078310	0.534887	-0.673863	

Table S-18. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 3-NPO⁻ anion for compound 1, with two explicit water molecules, calculated using WB97XD/6-311++G(d,p) level theory

40	1	5.414175	-0.318703	-1.119022
41	1	4.839327	-0.692696	0.530645
42	7	2.331337	-1.352402	-0.220117
43	8	4.948904	-2.262289	-0.817304
44	8	-2.905790	0.541591	-2.084897
45	1	-1.959511	0.374596	-1.935940
46	1	-3.251823	-0.309689	-2.371780
47	8	2.887733	-0.484883	2.701048
48	1	2.965818	-1.222074	2.084524
49	1	2.267273	0.073913	2.193007

Total Energy (a.u.)= -1778.50518; **NIMAG = i273.41**

Center		Atomic	Coordinate	s (Angstroms)	
Number		Number	Х	Y	Ζ
	6	0.024027	0 542007	0 512272	
1	16	-0.024027	0.542097	0.312373	
2	10 Q	0.101393	0.034819	2.1/10/0	
5 1	8	-1.555407	0.383238	-0.004402	
4 5	6	-7 767037	-0.791432	0 130172	
6	6	-2.202/32	0.000486	-0.139172	
07	6	-2.001691	-1.728702	0.177396	
8	6	-2.001071	-0.928850	-0.070572	
0	1	-4.388297	1 030008	-0.070372	
10	6	-3.05/1559	-2 637016	0.5/1811	
10	1	-0.985837	-2.037010	0.671957	
12	6	-0.763637	-2.054705	0.071757	
12	1	-7.842071	-3 668229	0.270074	
13	1	-5 188/6/	-2.956050	0.313/82	
14	6	1 778030	-2.950050 -1.133/07	-0.490088	
15	6	2 700016	-0.5913/2	-0.4900000	
10	6	2.705010	-0.571342	0 /68703	
17	6	4 044603	-2.000401	-1 350678	
10	1	2 3/8611	0 101563	-2 1/6703	
20	6	3 568478	-2 429114	0 516817	
20	1	1 520674	-2.429114	1 175139	
21	6	4 487864	-1 877740	-0 389921	
22	1	4 752788	-0 536902	-2 058280	
23	1	3 911347	-3.141067	1 260621	
24 25	7	-5 956579	-0.496652	-0 374970	
25	8	-6 131770	0.661882	-0 727100	
20	8	-6 856064	-1 321337	-0 264285	
28	6	5 866477	-2 270739	-0 350602	
20	7	6 982387	-2 592197	-0 324441	
30	6	1 383641	2.959969	-1 911563	
31	6	0 219224	2.246739	-1 233871	
32	6	1 372938	2.566952	0.883823	
33	6	2 501228	3 219712	0 107407	
34	1	-0 580950	2 977148	-1 034127	
35	1	-0 171662	1 481877	-1 907573	
36	1	2 115485	2.220537	-2.271114	
37	1	1 015243	3 528017	-2 769603	
38	1	0 674507	3 333488	1 252811	
39	1	1.786807	2.034970	1.736395	

Table S-19. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4-CNPO⁻ anion for compound 1, with three water molecules, calculated using WB97XD/6-311++G(d,p) level theory

40	1	2.987603	3.979151	0.723247
41	1	3.244891	2.457199	-0.172632
42	7	0.657521	1.634393	0.017477
43	8	2.027873	3.880762	-1.056364
44	8	3.480971	0.378411	2.541311
45	1	2.524912	0.191636	2.516304
46	1	3.831084	-0.110320	1.790227
47	8	-1.896554	2.765783	2.107582
48	1	-2.020886	2.467905	1.200778
49	1	-1.334393	2.066843	2.479720
50	8	-0.788353	-0.640246	-3.005998
51	1	-0.302227	-0.748171	-2.163691
52	1	-1.712865	-0.726204	-2.759510

Total Energy (a.u.) =-1854.561346; NIMAG = i268.12

Center Atomic Number Number		Atomic Number	Coordinates X	s (Angstroms) Y) Z
		0 35///08	0 358247	0.010168	
2	16	-0.334408	0.335247	1 557105	
2	8	0.109942	-0.133343	1 228232	
3	8	1 251/02	0.530466	0.654856	
4 5	6	-1.251402	-0.330400	0.034830	
6	6	3 052540	-0.900433	0.225231	
07	6	1 706838	-0.470245	1 125296	
8	6	3 987767	-1.438512	-0.151/81	
0	1	3.30/10/	-1.438512	0.023336	
9 10	6	2 666207	-3 196830	0.023330	
10	1	0 797809	-2 584971	1 624167	
11	6	3 827310	-2.304771	0.00/288	
12	1	2 50/1588	-4.250732	0.004288	
13	1	2.504588	-3.500537	-0.220162	
14	6	-2 51/1528	-0.6879/3	-0.220102	
15	6	-2.514520	0 177696	-0.685740	
10	6	-3.105555	_1 700301	0.712365	
17	6	-1.481007	-0.078916	-1.03/11/	
10	1	-7.660185	1 038036	-1.034414	
20	6	-2.000183	-2 043701	0.368582	
20	1	-7.648167	-2.043701	1 375204	
21	6	-5 161540	-1 180972	-0 511355	
22	1	-4 983936	0 587876	-1 724600	
23	1	-5.016946	-2 906316	0 771372	
2 4 25	7	5 194945	-0.993074	-0.857465	
25	8	5 228826	0 151542	-0.037403	
20	8	6 110374	-1.78/230	-0.080217	
27	6	-6 524405	-1.430216	-0.969217	
20	7	-0.524405	-1.430210 -1.635032	-0.808030	
30	6	1 129606	3 326309	0.624858	
31	6	0.074863	2 761043	-0 314882	
32	6	-1 173362	2.701043	1 623544	
32	6	-0.091154	2.049021	2 500726	
34	1	-0.656617	3 541490	-0 556949	
35	1	0.538521	2 413823	-1 233268	
36	1	1 891581	2.415025	0.819850	
37	1	1 606186	4 198747	0 175706	
38	1	_1 970999	2 782110	1 452356	
39	1	-1.597413	1.185994	2.130302	

Table S-20. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 3-NPO⁻ anion for compound **1**, with three explicit water molecules, calculated using WB97XD/6-311++G(d,p) level theory

40	1	-0.540602	3.079287	3.409857
41	1	0.645315	1.910615	2.771257
42	7	-0.647504	1.662672	0.314618
43	8	0.545302	3.755954	1.844040
44	8	-1.757564	2.018978	-3.101830
45	1	-1.201835	1.297721	-2.753417
46	1	-1.135470	2.735339	-3.233381
47	8	2.787547	1.822194	-2.259296
48	1	3.605849	1.350133	-2.079093
49	1	2.088394	1.167357	-2.100540
50	8	-0.415640	-0.742264	3.547478
51	1	0.148861	-0.465347	2.800565
52	1	-1.210888	-1.032551	3.099224

Total Energy (a.u.) = -1854.560868; NIMAG = i293.71

-

Center Number		Atomic Number	Coordinate X	es (Angstroms) Y) Z
1	6	0.222074	0.604905	0.350735	
2	16	0.388401	0.433912	-1.380777	
3	8	1 335706	0 436446	1 122076	
4	8	-0.591033	-0.880601	0.957847	
5	6	2.312573	-0.466991	0.824569	
6	6	3.387436	-0.052546	0.061764	
7	6	2.283513	-1.735137	1.370619	
8	6	4.409776	-0.949519	-0.165069	
9	1	3.410371	0.936921	-0.342329	
10	6	3.332742	-2.611181	1.131623	
11	1	1.451198	-2.025499	1.978247	
12	6	4.407925	-2.231000	0.356025	
13	1	3.304980	-3.597818	1.556484	
14	1	5.224317	-2.894896	0.157615	
15	6	-1.674268	-1.353052	0.403814	
16	6	-2.945308	-0.961926	0.852658	
17	6	-1.605284	-2.306040	-0.626645	
18	6	-4.089826	-1.508007	0.312679	
19	1	-3.009053	-0.235614	1.639918	
20	6	-2.748165	-2.847818	-1.164432	
21	1	-0.636845	-2.594461	-0.985891	
22	6	-4.005919	-2.457238	-0.701952	
23	1	-5.055103	-1.203839	0.676727	
24	1	-2.677896	-3.577862	-1.950737	
25	7	5.536550	-0.532203	-0.998202	
26	8	5.448669	0.498708	-1.583811	
27	8	6.483686	-1.248895	-1.049906	
28	6	-5.198788	-3.043607	-1.249639	
29	7	-6.139497	-3.509092	-1.676221	
30	6	-1.640504	2.610965	2.833403	
31	6	-0.400046	1.908435	2.308128	
32	6	-0.970100	2.756997	0.101859	
33	6	-2.186345	3.408663	0.731122	
34	1	0.468620	2.548657	2.460221	
35	1	-0.247775	0.998574	2.867027	
36	1	-2.481796	1.917325	2.843478	
37	1	-1.466403	2.946183	3.848956	
38	1	-0.154613	3.479905	0.048001	
39	1	-1.218749	2.453793	-0.896783	

Table S-21. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4-CNPO⁻ anion for compound 1, with four water molecules, calculated using WB97XD/6-311++G(d,p) level theory

40	1	-2.423441	4.323215	0.206638
41	1	-3.041088	2.737616	0.650947
42	7	-0.564560	1.598728	0.892063
43	8	-1.965015	3.738117	2.076592
44	8	3.027238	2.764814	-2.061717
45	1	2.228675	2.262542	-1.984660
46	1	3.686449	2.142202	-2.317878
47	8	-2.947625	3.618747	-2.796868
48	1	-2.094800	3.742155	-3.175176
49	1	-3.056161	2.676595	-2.764287
50	8	-2.787258	0.711939	-2.651058
51	1	-1.894961	0.542865	-2.371410
52	1	-3.317580	0.122954	-2.142289
53	8	-0.575082 -	1.695968	3.696556
54	1	-1.266029 -	2.334328	3.691665
55	1	-0.557383 -	1.353680	2.809213

Total Energy (a.u.) = -1930.621708; NIMAG = i262.62

Table S-22. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG)for Transition State (TS2) associated to the departure of 3-NPO⁻ anion for compound 1, with four explicit water molecules, calculated using WB97XD/6-311++G(d,p) level theory

Center		Atomic		Coordinate	es (Angstroms)	
Number		Number	Х	Y	Z	
1	6	1	231382	-0 171849	-0 201546	
2	16	0	<i>A</i> 95 <i>A</i> 87	-0.051034	-0.201340	
$\frac{2}{3}$	8	0	774270	-1.728069	0 508031	
<u>ј</u>	8	0	783039	0.665149	0.816510	
5	6	-0	559600	-1 795798	0.874936	
6	6	_1	554313	-2 180113	-0.034188	
7	6	-0	940282	-1 469336	2 185680	
8	6	-2	871828	-2 219158	0 394551	
9	1	-1	292615	-2 457916	-1 044787	
10	6	-2	270224	-1 518756	2 580421	
11	1	-0	165094	-1 188145	2.887323	
12	6	-3	261951	-1 895317	1 686136	
13	1	-2	537555	-1 257911	3 598228	
14	1	-4	304781	-1 944841	1 966295	
15	6	-0	054466	1 727356	0 584686	
16	6	0	504494	3 000865	0.614146	
17	6	-1	421852	1 552859	0 421533	
18	6	-0	309559	4 112312	0 477343	
19	1	1	576214	3.105538	0.724597	
20	6	-2	.236003	2.661970	0.263547	
21	1	-1	.845676	0.559762	0.384462	
22	6	-1	.685698	3.945081	0.298622	
23	1	0	.115609	5.108713	0.502087	
24	1	-3	.296440	2.525139	0.094527	
25	7	-3	.910678	-2.627308	-0.560943	
26	8	-3	.630401	-2.634860	-1.748260	
27	8	-5	.001729	-2.938613	-0.121870	
28	6	-2	.526414	5.097461	0.158395	
29	7	-3	.193010	6.032371	0.056191	
30	6	4	.656604	-1.508613	-0.621228	
31	6	3	.339028	-0.976676	-1.159227	
32	6	3	.417536	0.721071	0.558876	
33	6	4	.740513	0.125954	1.020114	
34	1	3	.525543	-0.275823	-1.985848	
35	1	2	.753507	-1.809890	-1.541947	
36	1	4	.458089	-2.291492	0.125302	
37	1	5	.246107	-1.934123	-1.435055	
38	1	3	597617	1 548067	-0 144858	

39	1	2.890424	1.115747	1.425892
40	1	5.386232	0.916658	1.408895
41	1	4.550301	-0.612245	1.812094
42	7	2.611631	-0.311816	-0.087423
43	8	5.444092	-0.485004	-0.041239
44	8	-2.851709	0.268333	-2.100453
45	1	-1.891011	0.258566	-1.971256
46	1	-3.064773	-0.647690	-2.299803
47	8	2.319410	2.657958	-2.143268
48	1	1.864636	1.797656	-2.176957
49	1	1.593018	3.275645	-2.044335
50	8	1.026630	-3.437187	-1.792597
51	1	1.017146	-3.080143	-0.891485
52	1	0.808238	-2.650168	-2.304840
53	8	2.325588	-1.587010	2.880409
54	1	1.922035	-1.769082	2.012850
55	1	2.312111	-0.629633	2.916274

Total Energy (a.u.) = -1930.621596; **NIMAG = i282.34**

Center Number		Atomic Number X	Coordinate	s (Angstroms 7)
inumber			1	L	
1	6	0.100308	0.852124	0.552239	
2	16	0.610298	2.499820	0.456341	
3	8	1.083434	-0.137392	0.635371	
4	8	-0.648730	0.487167	-1.013007	
5	6	2.221450	-0.094515	-0.103339	
6	6	3.326804	-0.702355	0.476001	
7	6	2.304018	0.437527	-1.390848	
8	6	4.504932	-0.772543	-0.251747	
9	1	3.266701	-1.107932	1.475927	
10	6	3.504267	0.356361	-2.084514	
11	1	1.432549	0.900303	-1.829221	
12	6	4.623334	-0.248737	-1.529663	
13	1	3.564109	0.772469	-3.083275	
14	1	5.560906	-0.321549	-2.062424	
15	6	-1.484859	-0.536456	-1.081400	
16	6	-1.177282	-1.812338	-0.569163	
17	6	-2.743473	-0.348292	-1.685575	
18	6	-2.087811	-2.846481	-0.657914	
19	1	-0.216170	-1.967510	-0.098772	
20	6	-3.649027	-1.386370	-1.779847	
21	1	-2.993039	0.637447	-2.062059	
22	6	-3.335194	-2.649013	-1.262508	
23	1	-1.837636	-3.824111	-0.260544	
24	1	-4.614545	-1.224831	-2.246305	
25	7	5.670254	-1.424381	0.361462	
26	8	5.536163	-1.918627	1.465964	
27	8	6.713417	-1.440248	-0.268319	
28	6	-4.272730	-3.722870	-1.353159	
29	7	-5.029914	-4.591344	-1.427504	
30	6	-1.806077	-0.845952	3.262532	
31	6	-0.589619	-0.108337	2.721929	
32	6	-2.083670	1.325814	1.497232	
33	6	-3.250884	0.532706	2.061089	
34	1	-0.291959	0.692351	3.419539	
35	1	0.239063	-0.807052	2.622036	
36	1	-2.017287	-1.708951	2.612778	
37	1	-1.615309	-1.200764	4.277899	
38	1	-1.870976	5 2.200300	2.129515	

Table S-23. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of $4CNPO^{-}$ anion for compound 1, with one explicit ethanol molecule, calculated using WB97XD/6-311++G(d,p) level theory

39	1	-2.326911	1.688180	0.497213
40	1	-4.118404	1.179758	2.202918
41	1	-3.515707	-0.275888	1.363617
42	7	-0.928046	0.447331	1.421922
43	8	-2.944463	-0.012472	3.334403
44	8	-1.769438	2.935469	-1.907632
45	1	-1.428173	2.062830	-1.650246
46	6	-1.104514	3.758703	-0.945829
47	1	-0.055738	3.777889	-1.157015
48	1	-1.263673	3.361170	0.034750
49	6	-1.668828	5.189796	-1.017396
50	1	-2.717284	5.170815	-0.804608
51	1	-1.170160	5.806174	-0.298850
52	1	-1.511127	5.586730	-1.998453

Total Energy (a.u.) = - 1748.664578; NIMAG = i273,55

Table S-24. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of $3NPO^{-}$ anion for compound 1, with one explicit ethanol molecule, calculated using WB97XD/6-311++G(d,p) level theory

Center		Atomic		Coordinates	s (Angstroms)	
Number		Number	Х	Y	Z	
1	6		0 594050	0.022015	0 671910	
1	0	-	1 100000	0.922013	0.0/1819	
2	10	-	-1.109000	2.408/39	0.043032	
5	ð		0.049038	0.008132	-0./42304	
4	8	-	-1.301303	0.008838	1.200594	
5	6		0.933045	-0.946218	-0.493150	
6	6		2.164556	-0.940659	-1.169943	
7	6		0.700830	-1.969756	0.443774	
8	6		3.090097	-1.936004	-0.902747	
9	1		2.386275	-0.155420	-1.881989	
10	6		1.657652	-2.942203	0.695671	
11	1	-	-0.241570	-1.979758	0.974974	
12	6		2.873168	-2.945719	0.025382	
13	1		1.451215	-3.716971	1.426510	
14	1		3.628736	-3.697065	0.203651	
15	6		2.673756	-0.296531	0.596375	
16	6	-	-3.672361	-0.762986	1.451527	
17	6	-	-2.894270	-0.242086	-0.780789	
18	6		4.890123	-1.176170	0.943830	
19	1	-	-3.475015	-0.787503	2.516262	
20	6		4.116193	-0.652294	-1.283095	
21	1		-2.113409	0.112750	-1.435168	
22	6	-	-5.122254	-1.121456	-0.432733	
23	1	-	-5.665946	-1.535701	1.609340	
24	1	-	4.294504	-0.611892	-2.351112	
25	7		4 375384	-1 916425	-1 625161	
26	8		4 563377	-1 037205	-2.442778	
27	8		5 190362	-2.786546	-1 363985	
28	6	-	-6 380664	-1 547892	-0.964083	
20	7		-7 396520	-1 895901	-1 385599	
30	6		2 904372	1 259742	1 819466	
31	6		1 637318	1.239742	1 16/180	
31	6		0.373/02	0.750106	2 047804	
32	6		1 601021	0.750100	2.947804	
24	1		1.091021	0.283870	1 405008	
24 25	1		1.414300	2./90334	1.473008	
33 26	1		1./33934	1.709270	0.07929	
30 27	1		2.108329	0.2/898/	1.39/0/1	
<i>31</i>	1		5.12/380	1.954836	1.045525	
38	1		0.07/883	1./1//06	5.38/294	

39	1	-0.400303	0.017568	3.169839
40	1	1.623971	0.269357	4.642327
41	1	1.910475	-0.730290	3.189296
42	7	0.540854	0.874683	1.509630
43	8	2.759331	1.149992	3.226764
44	8	0.954179	2.001420	-2.527063
45	1	0.476890	1.247734	-2.141375
46	6	0.298617	3.083566	-1.860656
47	1	-0.760558	2.983589	-1.974901
48	1	0.548419	3.065589	-0.820379
49	6	0.757520	4.418717	-2.475780
50	1	0.268145	5.228506	-1.976126
51	1	1.816906	4.517997	-2.362887
52	1	0.506357	4.437318	-3.515718

,Total Energy (a.u.) = -1748.674384; **NIMAG = i270,72**

Table S-25. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4CNPO^- anion for compound 1, with one explicit water molecule and one ethanol molecule, calculated using WB97XD/6-311++G(d,p) level theory

Center Number		Atomic Number X		Coordinates Y	s (Angstroms) Z	
1	6	0.215	527	1.005682	-0.478540	
2	16	0.712	228	0.319712	-1.997851	
3	8	1.1392	203	1.123928	0.525842	
4	8	-0.774	177	-0.209876	0.392778	
5	6	2.1003	62	0.186830	0.756441	
6	6	3.3257	/06	0.318897	0.133167	
7	6	1.8916	518	-0.812468	1.688483	
8	6	4.3214	19	-0.581430	0.448704	
9	1	3.4853	31	1.094579	-0.584616	
10	6	2.9141	97	-1.699874	1.987196	
11	1	0.9395	518	-0.885210	2.172687	
12	6	4.1430)33	-1.597522	1.367496	
13	1	2.7452	232	-2.477960	2.708936	
14	1	4.9415	530	-2.278587	1.579072	
15	6	-1.771	386	-0.824898	-0.186867	
16	6	-3.081	334	-0.337171	-0.068614	
17	6	-1.576	779	-2.020101	-0.897907	
18	6	-4.145	366	-1.012067	-0.626115	
19	1	-3.2424	130	0.571241	0.480143	
20	6	-2.6394	172	-2.689972	-1.453812	
21	1	-0.576	568	-2.391336	-1.002277	
22	6	-3.9382	212	-2.195980	-1.325051	
23	1	-5.144	94	-0.625668	-0.520404	
24	1	-2.472	922	-3.603862	-1.995697	
25	7	5.6135	571	-0.458253	-0.222225	
26	8	5.7059	98	0.318233	-1.118850	
27	8	6.5094	31	-1.133198	0.169565	
28	6	-5.0490	522	-2.904875	-1.897480	
29	7	-5.928	880	-3.463804	-2.343736	
30	6	-1.993	98	3.684967	0.800767	
31	6	-0.695.	393	2.895786	0.771641	
32	6	-0.855	336	2.897849	-1.654377	
33	6	-2.151	388	3.672585	-1.507106	
34	1	0.1470	88	3.584816	0.843559	
35	1	-0.666)94	2.242230	1.628714	
36	1	-2.836	976	3.004469	0.911809	
37	1	-1.9908	374	4.363600	1.645303	
38	1	-0.0332	282	3.596125	-1.824425	

39	1	-0.918626	2.243121	-2.505930
40	1	-2.277023	4.344122	-2.347951
41	1	-2.992022	2.979078	-1.488586
42	7	-0.614177	2.112619	-0.453619
43	8	-2.161737	4.462257	-0.349789
44	8	3.608702	-1.639293	-2.723419
45	1	2.754875	-1.379655	-2.410111
46	1	4.068858	-0.825863	-2.838934
47	8	-1.394201	0.015517	3.164964
48	1	-1.247522	0.107980	2.228787
49	6	-2.446325	-0.947402	3.268504
50	1	-2.084055	-1.906004	2.960700
51	1	-3.260694	-0.654945	2.639081
52	6	-2.928698	-1.025643	4.728913
53	1	-3.714802	-1.747370	4.806701
54	1	-2.113916	-1.316460	5.358559
55	1	-3.292533	-0.067461	5.036177

Total Energy (a.u.) = -1865.127290; **NIMAG = i283.59**

-

Table S-26. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of $3NPO^{-}$ anion for compound 1, with one explicit water molecule and one ethanol molecule, calculated using WB97XD/6-311++G(d,p) level theory

Center		Atomic	v	Coordinates	(Angstroms)	
Number		Number	λ	Ŷ	L	
1	6		0.009779	0.904413	-0.919979	
2	16		0.232736	-0.279440	-2.169099	
3	8		0.536314	0.177073	0.676351	
4	8		-1.258920	1.168599	-0.486375	
5	6		1.749942	-0.296614	0.802914	
6	6		2.042896	-1.622174	0.455584	
7	6		2.793089	0.480431	1.311544	
8	6		3.324797	-2.098130	0.605855	
9	1		1.263894	-2.248094	0.081632	
10	6		4.073771	-0.030249	1.456943	
11	1		2.576874	1.489484	1.607133	
12	6		4.366694	-1.331087	1.101801	
13	1		4.852317	0.596735	1.855171	
14	1		5.348919	-1.743367	1.204827	
15	6		-2.275980	0.273380	-0.461648	
16	6		-3.480763	0.726183	-0.978500	
17	6		-2.185197	-0.983789	0.113916	
18	6		-4.600534	-0.074985	-0.924137	
19	1		-3.518477	1.702626	-1.422882	
20	6		-3.304396	-1.789986	0.151354	
21	1		-1.251818	-1.317939	0.510771	
22	6		-4.516834	-1.341799	-0.359732	
23	1		-5.534697	0.273392	-1.324931	
24	1		-3.229203	-2.774882	0.572473	
25	7		3.603371	-3.485194	0.221428	
26	8		2.735240	-4.116478	-0.292271	
27	8		4.689959	-3.916777	0.440616	
28	6		-5.687849	-2.179296	-0.303716	
29	7		-6.616357	-2.825248	-0.257815	
30	6		2.567029	3.474982	-1.707996	
31	6		1.492514	2.480112	-2.104120	
32	6		0.242315	3.206758	-0.145427	
33	6		1.372684	4.180020	0.141759	
34	1		0.832656	2.935267	-2.845170	
35	1		1.947388	1.613775	-2.551791	
36	1		3.313862	2.980312	-1.087326	
37	1		3.056030	3.859741	-2.594958	
38	1		-0.549735	3.729041	-0.684385	

39	1	-0.162056	2.852945	0.788920
40	1	0.974135	5.076501	0.601249
41	1	2.084104	3.730187	0.832968
42	7	0.733272	2.080108	-0.928684
43	8	2.035427	4.576313	-1.024813
44	8	-0.438654	-3.712547	-1.150985
45	1	-0.427032	-2.852935	-1.546311
46	1	0.461694	-3.992212	-1.141344
47	8	-0.851663	1.438046	2.860847
48	1	-0.317530	1.090967	2.153768
49	6	-2.192252	1.292493	2.384889
50	1	-2.273654	1.725961	1.410015
51	1	-2.442222	0.253291	2.335160
52	6	-3.159036	2.007550	3.346982
53	1	-2.910073	3.047052	3.395478
54	1	-4.162290	1.897275	2.991704
55	1	-3.076473	1.575147	4.322231

Total Energy (a.u.) = -1865.118828; **NIMAG = i290.65**

-

Table S-27. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of 4CNPO⁻ anion for compound 1, with two explicit ethanol molecules, calculated using WB97XD/6-311++G(d,p) level theory

Center Number		Atomic Number	X	Coordinat Y	es (A	ngstroms) Z)	
1	6	0.7	 55915	-1.100525	5 -0.	 587590		
2	16	-0.2	89077	-0.533820	5 -1.	810469		
3	8	0.3	07073	-1.921466	5 0.4	428988		
4	8	1.2	59300	0.363121	0.5	535854		
5	6	-0.8	28390	-1.588525	5 1.	118509		
6	6	-2.0	81933	-1.928673	3 0.	629262		
7	6	-0.6	81622	-0.963053	3 2.	354685		
8	6	-3.1	86016	-1.613664	4 1.4	413095		
9	1	-2.1	90859	-2.406076	5 -0.	334659		
10	6	-1.8	09499	-0.667276	5 3.	115372		
11	1	0.3	17893	-0.699712	2 2.0	679825		
12	6	-3.0	79375	-0.989407	7 2.	650035		
13	1	-1.6	96806	-0.167928	3 4.	071520		
14	1	-3.9	73313	-0.75767	1 3.1	214645		
15	6	0.8	63995	1.598879	0.3	325820		
16	6	1.8	25693	2.613999	0.1	109800		
17	6	-0.4	99477	1.969539	9 0.3	332249		
18	6	1.4	48667	3.930805	.0.0	076900		
19	1	2.8	74927	2.332656	0 .1	109659		
20	6	-0.8	78529	3.286255	5 0.	129421		
21	1	-1.2	54254	1.213553	3 0.5	510052		
22	6	0.0	88092	4.282293	-0.0	074414		
23	1	2.2	00358	4.698981	-0.2	231707		
24	1	-1.9	32139	3.547147	7 0.	129952		
25	7	-4.5	18374	-1.93634	1 0.	903099		
26	8	-4.6	20122	-2.273532	2 -0.	272056		
27	8	-5.4	66740	-1.854794	1 1.	671913		
28	6	-0.2	99181	5.647132	2 -0.	268402		
29	7	-0.6	02662	6.759097	7 -0.4	421159		
30	6	3.6	67003	-3.315910) -1.	296259		
31	6	2.1	91986	-2.945336	5 -1.	223743		
32	6	2.7	88251	-0.701340) -1.	847238		
33	6	4.2	45535	-1.132666	5 -1.	873995		
34	1	1.7	06229	-3.145742	2 -2.	194289		
35	1	1.7	03531	-3.546566	5 -0.4	454989		
36	1	4.1	19941	-3.227301	-0.	294560		
37	1	3.7	78329	-4.348517	7 -1.	638174		
38	1	2.3	45474	-0.797080) -2.	850072		
39	1	2.7	11035	0.341959) -1.:	535446		

40	1	4.789769	-0.575409	-2.640140
41	1	4.709575	-0.943791	-0.893834
42	7	2.073363	-1.526085	-0.880081
43	8	4.375519	-2.506801	-2.212168
44	8	-3.421684	0.530127	-1.141919
45	1	-2.470478	0.352901	-1.238444
46	8	3.481756	-0.694546	1.750574
47	1	2.748388	-0.497188	1.135310
48	6	-3.952568	0.304626	-2.450434
49	1	-3.905749	-0.739571	-2.679259
50	1	-4.970822	0.631688	-2.483458
51	6	-3.126150	1.093917	-3.482738
52	1	-2.131269	0.701680	-3.518258
53	1	-3.579958	1.003196	-4.447481
54	1	-3.093023	2.125279	-3.199726
55	6	3.529269	0.552543	2.448722
56	1	3.597104	1.353991	1.743045
57	1	2.641305	0.667374	3.034584
58	6	4.760808	0.576805	3.373017
59	1	4.795585	1.509384	3.896455
60	1	4.693665	-0.225492	4.077794
61	1	5.648855	0.463382	2.787007

Total Energy (a.u.) = -1843.715480610; NIMAG = i255.49

Contor		Atomic	Coordinates	(Angstroms)	
Number		Number X	V	7	
			1		
1	6	0.041962	-1.026009	-0.929421	
2	16	-0.236279	0.351334	-1.947796	
3	8	-0.497042	-0.614172	0.771700	
4	8	1.323498	-1.314047	-0.552424	
5	6	-1.726385	-0.217364	0.982939	
6	6	-2.071542	1.136664	0.877868	
7	6	-2.735353	-1.111812	1.347032	
8	6	-3.368957	1.528969	1.112807	
9	1	-1.319606	1.848384	0.620014	
10	6	-4.032877	-0.684461	1.583450	
11	1	-2.479114	-2.148331	1.457843	
12	6	-4.377197	0.646623	1.466072	
13	1	-4.784013	-1.401576	1.865170	
14	1	-5.373207	0.996105	1.642621	
15	6	2.306680	-0.398978	-0.372286	
16	6	3.522105	-0.705701	-0.965827	
17	6	2.174916	0.731268	0.418392	
18	6	4.611638	0.115668	-0.773521	
19	1	3.591673	-1.585268	-1.577266	
20	6	3.263552	1.560506	0.595067	
21	1	1.233831	0.953300	0.871642	
22	6	4.486524	1.257583	0.007998	
23	1	5.553967	-0.119474	-1.233288	
24	1	3.155975	2.451103	1.185223	
25	7	-3.702354	2.950635	0.982110	
26	8	-2.862193	3.696292	0.589428	
27	8	-4.802955	3.294177	1.274752	
28	6	5.625956	2.116295	0.208322	
29	7	6.530119	2.779088	0.365418	
30	6	-2.424685	-3.511988	-2.155758	
31	6	-1.391946	-2.421902	-2.371223	
32	6	-0.097004	-3.436573	-0.576425	
33	6	-1.187394	-4.488171	-0.464138	
34	1	-0.722523	-2.712252	-3.183196	
35	1	-1.883157	-1.507955	-2.656322	
36	1	-3.183722	-3.164666	-1.455099	
37	1	-2.907170	-3.751503	-3.095814	
38	1	0.708886	-3.823827	-1.201862	
39	1	0.302703	-3.239222	0.404899	

Table S-28. Cartesian coordinates, energy (u.a.) and number of imaginary frequencies (NIMAG) for Transition State (TS2) associated to the departure of $3NPO^{-}$ anion for compound 1, with two explicit ethanol molecule, calculated using WB97XD/6-311++G(d,p) level theory

40	1	-0.751268	-5.436040	-0.172597
41	1	-1.908606	-4.196109	0.297958
42	7	-0.637116	-2.208384	-1.145366
43	8	-1.845811	-4.695929	-1.680909
44	8	0.316458	3.571814	-0.336782
45	1	0.484941	2.778958	-0.824979
46	8	0.955564	-2.188957	2.693983
47	1	0.402891	-1.742927	2.060442
48	6	2.285801	-1.906285	2.251868
49	1	2.377957	-2.156413	1.215604
50	1	2.493029	-0.865318	2.387311
51	6	3.287473	-2.740085	3.072252
52	1	3.081239	-3.781086	2.935558
53	1	4.282930	-2.527395	2.742512
54	1	3.194217	-2.491103	4.108694
55	6	-0.637276	4.296894	-1.117520
56	1	-0.769355	5.274021	-0.701976
57	1	-1.572535	3.777136	-1.111002
58	6	-0.128205	4.419478	-2.565767
59	1	-0.082492	3.447683	-3.011217
60	1	-0.796373	5.038254	-3.127521
61	1	0.847955	4.857668	-2.564812

Total Energy (a.u.) = -1843.726553; NIMAG = i283.48