Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

A new Schiff-based chemosensor for chromogenic sensing of Cu²⁺, Co²⁺ and S²⁻ in aqueous solution: experimental and theoretical studies

Cheol Hong Min,^a Sangkyun Na,^a Jae Eun Shin,^a Jae Kyun Kim,^a Tae Geun Jo,^b* Cheal Kim^{*a,b}

^a Nowon Institute of Education for The Gifted at Seoultech, Seoul National University of Science and Technology, Seoul 139-743, Korea

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: jtgjj@nate.com and chealkim@seoultech.ac.kr

Fig. S1 Job plot of 1 (40 μ M) with Cu²⁺, where the absorbance at 409 nm was plotted against the mole fraction of Cu²⁺.

Fig. S2 Benesi-Hildebrand plot of 1 (20 μ M) for Cu²⁺, assuming 1:1 stoichiometry for association of 1 with Cu²⁺.

Fig. S3 Determination of the detection limit of 1 (20 μ M) for Cu²⁺ based on change of absorbance at 409 nm.

Fig. S4 UV-vis absorbance changes (at 409 nm) of 1 (20 μ M) and 1-Cu²⁺ complex, respectively, in different pH (2-12) solutions (bis-tirs buffer/THF (1/1, v/v)).

Fig. S5 UV-vis absorbance (at 409 nm) of 1 as a function of Cu^{2+} concentration. [1] = 20 μ M and $[Cu^{2+}] = 0.16 \mu$ M.

Fig. S6 Job plot of 1 (40 μ M) with Co²⁺, where the absorbance at 427 nm was plotted against the mole fraction of Co²⁺.

Fig. S7 Positive-ion ESI-mass spectrum of 1 (100 µM) upon addition of 1 equiv of Co²⁺.

Fig. S8 Absorption spectra of 1 (20 μ M), 1-Co²⁺ complex under the degassed and exposure-to-air conditions, and 1-Co²⁺ complex under aerobic conditions, respectively.

Fig. S9 Benesi-Hildebrand plot of 1 (20 μ M) for Co²⁺, assuming 1:1 stoichiometry for association of 1 with Co²⁺.

Fig. S10 Determination of the detection limit of 1 (20 μ M) for Co²⁺ based on change of absorbance at 427 nm.

Fig. S11 UV-vis absorbance changes (at 427 nm) of **1** (20 μ M) and **1**-Co²⁺ complex, respectively, in different pH (2-12) solution (bis-tirs buffer/THF (1/1, v/v)).

Fig. S12 UV-vis absorbance (at 427 nm) of **1** as a function of Co^{2+} concentration. [**1**] = 20 μ M and $[Co^{2+}] = 0.16 \mu$ M.

Fig. S13 (a) UV-vis spectral and (b) color changes of 1 (20 μ M) after the sequential addition of Cu²⁺ (1.2 equiv) and EDTA (1.8 equiv).

Fig. S14 UV-vis spectral change of 1 (20 μ M) with S²⁻ (0-42 equiv) in bis-tris buffer/DMSO (1/9, v/v).

Fig. S15 Job plot of 1 (100 μ M) with S²⁻, where the absorbance at 402 nm was plotted against the mole fraction of S²⁻.

Fig. S16 UV-vis absorbance of 1 (20 μ M) after addition of increasing different concentration of S²⁻. The red line is the non-linear fitting curve between 1 and S²⁻. Association constant (*K*) of 1 with S²⁻ was calculated by non-linear least square curve fitting.

Fig. S17 Determination of the detection limit of 1 (20 μ M) for S²⁻ based on change of absorbance at 402 nm.

Fig. S18 (a) Blue bars are the theoretical excitation energies (TD-DFT method) and black curve is the experimental UV-vis spectrum of 1. (b) The major electronic transition energy and molecular orbital contribution for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr 3) of molecular orbitals participating in the major singlet excited state of 1.

Excited State 16	Wavelength	percent (%)	Character	Oscillator strength
H (α) \rightarrow L+2 (α)	396.84	36%	ICT	0.598
H (β) \rightarrow L+3 (β)		37%	ICT	
H-4 (β) \rightarrow L (β)		4%	LMCT	
H-1 (β) \rightarrow L+2 (β)		4%	LMCT	
H-25 (β) \rightarrow L (β)		3%	LMCT	
H-1 (α) \rightarrow L+2 (α)		2%	ICT	
H-1 (β) \rightarrow L+3 (β)		2%	ICT	
H-2 $(\beta) \rightarrow L (\beta)$		2%	LMCT	

(b)

Fig. S19 (a) Blue bars are the theoretical excitation energies (TD-DFT method) and black curve is the experimental UV-vis spectrum of $1-Cu^{2+}$. (b) The major electronic transition energies and molecular orbital contributions for $1-Cu^{2+}$ (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr 3) of molecular orbitals participating in the major singlet excited state of $1-Cu^{2+}$.

Excited State 16	Wavelength	Percent (%)	Character	Oscillator strength
$H \rightarrow L+5$	390.81	64%	LMCT	0.6878
$H-1 \rightarrow L+4$		16%	ICT, LMCT	
$H-3 \rightarrow L$		3%	ICT, LMCT	
$H \rightarrow L+4$		3%	ICT, LMCT	

(b)

Fig. S20 (a) Blue bars are the theoretical excitation energies (TD-DFT method) and black curve is the experimental UV-vis spectrum of $1-Co^{3+}$. (b) The major electronic transition energies and molecular orbital contributions for $1-Co^{3+}$ (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr 3) of molecular orbitals participating in the major singlet excited state of $1-Co^{3+}$.

(c)

Fig. S21 (a) Blue bars are the theoretical excitation energies (TD-DFT method) and black curve is the experimental UV-vis spectrum of 1^{2-} . (b) The major electronic transition energy and molecular orbital contribution for 1^{2-} (H = HOMO and L = LUMO). (c)

Isosurface (0.030 electron bohr 3) of molecular orbitals participating in the major singlet excited state of 1^{2-} .