Electronic Supplementary Information

Photophysical Properties of a Series of Cycloplatinated(II) Complexes Featuring Allyldiphenylphosphane

Hamid R. Shahsavari,^a* Reza Babadi Aghakhanpour,^{a,c} Mojgan Babaghasabha,^a Mohsen Golbon Haghighi,^b S. Masoud Nabavizadeh^c and Behrouz Notash^b

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-6731, Iran.

^bDepartment of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran.

^cDepartment of Chemistry, College of Sciences, Shiraz University, Shiraz, 71454, Iran.

Email: <u>shahsavari@iasbs.ac.ir</u>

Contents:	Page		
Figure S1. ¹ HNMR spectrum of [Pt(ppy)(Me)(PPh ₂ allyl)], 1, in CD ₂ Cl ₂ .	4		
Figure S2. ¹³ CNMR spectrum of [Pt(ppy)(Me)(PPh ₂ allyl)], 1, in CD ₂ Cl ₂ .	4		
Figure S3. ³¹ PNMR spectrum of [Pt(ppy)(Me)(PPh ₂ allyl)], 1, in CD ₂ Cl ₂ .	5		
Figure S4. ¹⁹⁵ PtNMR spectrum of [Pt(ppy)(Me)(PPh ₂ allyl)], 1, in CD ₂ Cl ₂ .	5		
Figure S5. DEPT 135° spectrum of [Pt(ppy)(Me)(PPh ₂ allyl)], 1, in CD ₂ Cl ₂ .	6		
Figure S6. HHCOSY spectrum of [Pt(ppy)(Me)(PPh ₂ allyl)], 1, in CD ₂ Cl ₂ .	6		
Figure S7. HSQC spectrum of [Pt(ppy)(Me)(PPh ₂ allyl)], 1, in CD ₂ Cl ₂ .	7		
Figure S8. ¹ HNMR spectrum of [Pt(bpy)(Me)(PPh ₂ allyl)], 2 , in acetone- d_6 .	7		
Figure S9. ¹³ CNMR spectrum of [Pt(bpy)(Me)(PPh ₂ allyl)], 2 , in acetone- d_6 .	8		
Figure S10. ³¹ PNMR spectrum of [Pt(bpy)(Me)(PPh ₂ allyl)], 2 , in acetone- d_6 .	8		
Figure S11. ¹⁹⁵ PtNMR spectrum of $[Pt(bpy)(Me)(PPh_2allyl)]$, 2 , in acetone- d_6 .	9		
Figure S12. DEPT 135° spectrum of [Pt(bpy)(Me)(PPh ₂ allyl)], 2 , in acetone- d_6 .	9		
Figure S13. HHCOSY spectrum of $[Pt(bpy)(Me)(PPh_2allyl)]$, 2 , in acetone- d_6 .	10		
Figure S14. HSQC spectrum of [Pt(bpy)(Me)(PPh ₂ allyl)], 2, in acetone- d_6 .	10		
Figure S15. ¹ HNMR spectrum of [Pt(O-bpy)(Me)(PPh ₂ allyl)], 3 , in acetone- d_6 .	11		
Figure S16. ¹³ CNMR spectrum of [Pt(O-bpy)(Me)(PPh ₂ allyl)], 3 , in acetone- d_6 .	11		
Figure S17. ³¹ PNMR spectrum of [Pt(O-bpy)(Me)(PPh ₂ allyl)], 3 , in acetone- d_6 .	12		
Figure S18. ¹⁹⁵ PtNMR spectrum of [Pt(O-bpy)(Me)(PPh ₂ allyl)], 3 , in acetone- d_6 .	12		
Figure S19. DEPT 135° spectrum of [Pt(O-bpy)(Me)(PPh ₂ allyl)], 3 , inacetone- d_6 .	13		
Figure S20. HHCOSY spectrum of [Pt(O-bpy)(Me)(PPh ₂ allyl)], 3 , in acetone- <i>d</i> ₆ .			
Figure S21. HSQC spectrum of $[Pt(O-bpy)(Me)(PPh_2allyl)]$, 3 , in acetone- d_6 .			
Figure S22. ¹ HNMR spectrum of [Pt(bzq)(Me)(PPh ₂ allyl)], 4, in CD ₂ Cl ₂ .			
Figure S23. ¹³ CNMR spectrum of [Pt(bzq)(Me)(PPh ₂ allyl)]. 4. in CD ₂ Cl ₂ .			
Figure S24. ³¹ PNMR spectrum of [Pt(bzg)(Me)(PPh ₂ allyl)], 4, in CD ₂ Cl ₂ .			
Figure S25. ¹⁹⁵ PtNMR spectrum of [Pt(bzq)(Me)(PPh ₂ allyl)], 4, in CD ₂ Cl ₂ .	16		
Figure S26. DEPT 135° spectrum of [Pt(bzq)(Me)(PPh ₂ allyl)], 4, in CD ₂ Cl ₂ .	16		
Figure S27. HHCOSY spectrum of [Pt(bzq)(Me)(PPh ₂ allyl)], 4, in CD ₂ Cl ₂ .	17		
Figure S28. HSQC spectrum of [Pt(bzq)(Me)(PPh ₂ allyl)], 4, in CD ₂ Cl ₂ .	17		
Figure S29. Crystal packing of the complex [Pt(bzq)(Me)(PPh ₂ allyl)], 4, displaying the various	18		
intermolecular short contacts.			
Figure S30. Crystal packing of the complex [Pt(ppy)(Me)(PPh ₂ Me)], A (obtained from the	19		
reference No. 47)			
Figure S31. Crystal packing of the complex [Pt(ppy)(Me)(PPh ₃)] B.	20		
Figure S32. View of the DFT optimized structure of complex 1 together with the atom	21		
numbering.			
Figure S33. View of the DFT optimized structure of complex 2 together with the atom	21		
numbering.			
Figure S34. View of the DFT optimized structure of complex 3 together with the atom	22		
numbering.			

Figure S35. View of the DFT optimized structure of complex 4 together with the atom	22			
numbering.				
Table S1. Selected calculated bond distances (A°) and angles (deg) for the complex 1 (S_0 and T_1	23			
states) compared with the corresponding experimental values.				
Table S2. Selected calculated bond distances (A°) and angles (deg) for the complex 2 (S_0 and T_1	24			
states).				
Table S3. Selected calculated bond distances (A°) and angles (deg) for the complex 3 (S_0 state).	25			
Table S4. Selected calculated bond distances (A°) and angles (deg) for the complex 4 (S_0 and	26			
T ₁ states) compared with the corresponding experimental values.				
Figure S36. MO plots of the complex 1.	27			
Figure S37. MO plots of the complex 2.	28			
Figure S38. MO plots of the complex 3.				
Figure S39. MO plots of the complex 4.				
Table S5. The energies of the selected molecular orbitals of dimer complexes and their	31			
compositions in singlet and triplet state ($L' = Allyldiphenylphosphane ligand$).				
Table S6. Wavelengths and corresponding nature of transitions for the complexes 1-4 where L =	32			
cyclometal ligands (ppy, bpy, O-bpy and bzq for the complexes 1, 2, 3 and 4 respectively), $L' = $				
allyldiphenylphosphane ligand and $L'' = Me$ ligand.				
Figure S40. Comparitive MO diagram for computed S_0 (left) and T_1 (right) states of the complex	33			
1.				
Figure S41. Comparitive MO diagram for computed S_0 (left) and T_1 (right) states of the complex	34			
2.				
Figure S42. Comparitive MO diagram for computed S_0 (left) and T_1 (right) states of the complex	34			
4.				
Table S7. Crystallographic and structure refinement data for the complexes 1, 4 and B.	35			

Figure S2. ¹³CNMR spectrum of [Pt(ppy)(Me)(PPh₂allyl)], 1, in CD₂Cl₂.

Figure S3. ³¹PNMR spectrum of [Pt(ppy)(Me)(PPh₂allyl)],1, in CD₂Cl₂.

Figure S4. ¹⁹⁵PtNMR spectrum of [Pt(ppy)(Me)(PPh₂allyl)], 1, in CD₂Cl₂.

Figure S5. DEPT 135° spectrum of [Pt(ppy)(Me)(PPh₂allyl)], 1, in CD₂Cl₂.

Figure S6. HHCOSY spectrum of [Pt(ppy)(Me)(PPh₂allyl)], 1, in CD₂Cl₂.

Figure S7. HSQC spectrum of [Pt(ppy)(Me)(PPh₂allyl)], 1, in CD₂Cl₂.

Figure S8.¹HNMR spectrum of [Pt(bpy)(Me)(PPh₂allyl)], **2**, in acetone-*d*₆.

Figure S9. ¹³CNMR spectrum of [Pt(bpy)(Me)(PPh₂allyl)], 2, in acetone-d₆.

Figure S10. ³¹PNMR spectrum of [Pt(bpy)(Me)(PPh₂allyl)], **2**, in acetone-*d*₆.

Figure S11. ¹⁹⁵PtNMR spectrum of [Pt(bpy)(Me)(PPh₂allyl)], 2, in acetone-d₆.

Figure S12. DEPT 135° spectrum of [Pt(bpy)(Me)(PPh₂allyl)], 2, in acetone-d₆.

Figure S13. HHCOSY spectrum of [Pt(bpy)(Me)(PPh₂allyl)], **2**, in acetone-*d*₆.

Figure S14. HSQC spectrum of [Pt(bpy)(Me)(PPh₂allyl)], **2**, in acetone-*d*₆.

Figure S15. ¹HNMR spectrum of [Pt(O-bpy)(Me)(PPh₂allyl)], **3**, in acetone-*d*₆.

Figure S16. ¹³CNMR spectrum of [Pt(O-bpy)(Me)(PPh₂allyl)], **3**, in acetone-*d*₆.

Figure S17. ³¹PNMR spectrum of [Pt(O-bpy)(Me)(PPh₂allyl)], **3**, in acetone-*d*₆.

Figure S18. ¹⁹⁵PtNMR spectrum of [Pt(O-bpy)(Me)(PPh₂allyl)], 3, in acetone-d₆.

Figure S19. DEPT 135° spectrum of [Pt(O-bpy)(Me)(PPh₂allyl)], 3, in acetone-d₆.

Figure S20. HHCOSY spectrum of [Pt(O-bpy)(Me)(PPh₂allyl)], 3, in acetone-d₆.

Figure S21. HSQC spectrum of [Pt(O-bpy)(Me)(PPh₂allyl)], 3, in acetone-*d*₆.

Figure S22. ¹HNMR spectrum of [Pt(bzq)(Me)(PPh₂allyl)], 4, in CD₂Cl₂.

Figure S23. ¹³CNMR spectrum of [Pt(bzq)(Me)(PPh₂allyl)], 4, in CD₂Cl₂.

Figure S24. ³¹PNMR spectrum of [Pt(bzq)(Me)(PPh₂allyl)], 4, in CD₂Cl₂.

Figure S25. ¹⁹⁵PtNMR spectrum of [Pt(bzq)(Me)(PPh₂allyl)], 4, in CD₂Cl₂.

Figure S26. DEPT 135° spectrum of [Pt(bzq)(Me)(PPh₂allyl)], 4, in CD₂Cl₂.

Figure S27. HHCOSY spectrum of [Pt(bzq)(Me)(PPh₂allyl)], 4, in CD₂Cl₂.

Figure S28. HSQC spectrum of [Pt(bzq)(Me)(PPh₂allyl)],4, in CD₂Cl₂.

Figure S29. Crystal packing of the complex [Pt(bzq)(Me)(PPh₂allyl)], **4**, displaying the various intermolecular short contacts.

Figure S30. Crystal packing of the complex [Pt(ppy)(Me)(PPh₂Me)], **A** (obtained from the reference No. 47)

Figure S31. Crystal packing of the complex [Pt(ppy)(Me)(PPh₃)] B.

Figure S32. View of the DFT optimized structure of complex 1 with the atom numbering.

Figure S34. View of the DFT optimized structure of complex 3 with the atom numbering.

Figure S35. View of the DFT optimized structure of complex 4 with the atom numbering.

Bond distance or angle	S ₀	Crystal Stucture	T ₁
Pt1-N3	2.20280	2.13619	2.15585
Pt1-C4	2.04720	2.03716	2.00717
Pt1-C23	2.08084	2.04017	2.09201
Pt1-P2	2.39643	2.30069	2.42017
P2-C27	1.88418	1.84875	1.88318
C27-C30	1.50243	1.46810	1.50078
C30-C32	1.33563	1.31069	1.33515
P2-C35	1.85129	1.81369	1.84790
P2-C46	1.84538	1.83152	1.84332
N3-C14	1.36332	1.35638	1.42302
C13-C14	1.46919	1.47044	1.39783
C13-C4	1.42157	1.36131	1.49127
N3-Pt1-P2	103.62776	105.18327	102.01457
P2-Pt1-C23	86.86748	83.89673	86.62891
C23-Pt1-C4	90.94158	92.22254	91.54861
C4-Pt1-N3	78.90334	78.72584	80.63349
N3-Pt1-C23	169.07009	170.91033	170.01240
P2-Pt1-C4	174.06889	175.33491	171.34891
Pt1-P2-C27	110.48767	114.26042	111.48789
P2-C27-C30	114.24361	114.58290	113.50718
C27-C30-C32	124.63049	124.28503	124.47559
Pt1-N3-C14	113.20335	113.10606	112.62759
N3-C14-C13	115.54026	116.05940	115.46760
C14-C13-C4	116.98537	115.22925	117.38267
C13-C4-Pt1	115.28408	116.56872	113.85168

Table S1. Selected calculated bond distances (A°) and angles (deg) for the complex 1 (S_0 and T_1 states) compared with the corresponding experimental values.

Bond distance or angle	So	T ₁
Pt1-N3	2.21979	2.17540
Pt1-C4	2.04511	2.00246
Pt1-C21	2.07859	2.08885
Pt1-P2	2.39151	2.42145
P2-C25	1.88361	1.88252
C25-C28	1.50244	1.50079
C28-C30	1.33555	1.33508
P2-C33	1.85024	1.84677
P2-C44	1.84466	1.84245
N3-C12	1.35752	1.41348
C12-C11	1.47313	1.39317
C11-C4	1.41515	1.48944
N3-Pt1-P2	103.31218	101.62212
P2-Pt1-C21	87.58083	87.21864
C21-Pt1-C4	90.33125	91.23217
C4-Pt1-N3	79.04489	80.66336
N3-Pt1-C21	168.80626	169.97716
P2-Pt1-C4	174.52096	171.88921
Pt1-P2-C25	110.63624	111.73587
P2-C25-C28	114.32777	113.46308
C25-C28-C30	124.61069	124.45793
Pt1-N3-C12	112.53960	111.91147
N3-C12-C11	115.77164	115.92532
C12-C11-C4	117.50517	117.84162
C11-C4-Pt1	115.09664	113.63369

Table S2. Selected calculated bond distances (A°) and angles (deg) for the complex **2** (S_0 and T_1 states).

Bond distance or angle	S ₀
Pt1-N26	2.20398
Pt1-C7	2.04598
Pt1-C3	2.07293
Pt1-P2	2.40909
P2-C54	1.88468
C54-C40	1.50156
C40-C38	1.33594
P2-C27	1.84472
P2-C42	1.84183
N26-C17	1.36752
C17-C16	1.47357
C16-C7	1.41985
N15-O14	1.29394
N26-Pt1-P2	98.92676
P2-Pt1-C3	91.02541
C3-Pt1-C7	92.08051
C7-Pt1-N26	78.60303
N26-Pt1-C3	169.36768
P2-Pt1-C7	171.37730
Pt1-P2-C54	107.80931
P2-C54-C40	118.80215
C54-C40-C38	124.43986
Pt1-N26-C17	114.42423
N26-C17-C16	113.52554
C17-C16-C7	118.34038
C16-C7-Pt1	114.92159
C16-N15-O14	123.37375
C12-N15-O14	117.20437

Table S3. Selected calculated bond distances (A°) and angles (deg) for the complex **3** (S_0 state).

Bond distance or angle	S ₀	Crystal Structure	T_1
Pt1-N58	2.23854	2.15287	2.22469
Pt1-C37	2.04778	2.05678	2.02983
Pt1-C3	2.06576	2.03856	2.07046
Pt1-P2	2.39228	2.30181	2.40402
P2-C34	1.88765	1.84585	1.88499
C34-C20	1.50045	1.48303	1.50029
C20-C18	1.33578	1.30269	1.33569
P2-C22	1.84526	1.82021	1.84215
P2-C7	1.84675	1.83668	1.84541
N58-C40	1.36688	1.37484	1.34017
C40-C38	1.43451	1.41355	1.44659
C38-C37	1.42621	1.48714	1.40596
N58-Pt1-P2	97.14493	102.38729	96.90430
P2-Pt1-C3	92.94318	87.02961	92.72555
C3-Pt1-C37	90.92099	88.87436	91.76678
C37-Pt1-N58	79.38431	81.90531	79.09423
N58-Pt1-C3	169.56150	170.29587	170.04911
P2-Pt1-C37	172.23167	174.08600	170.33831
Pt1-P2-C34	107.68936	109.31459	107.34535
P2-C34-C20	119.24295	118.48960	118.78177
C34-C20-C18	124.70540	125.28530	124.60875
Pt1-N58-C40	110.86946	112.14388	111.18131
N58-C40-C38	117.04519	116.87756	117.15457
C40-C38-C37	118.71200	119.12987	117.73216
C38-C37-Pt1	113.92940	109.89896	114.73180

Table S4. Selected calculated bond distances (A°) and angles (deg) for the complex **4** (S_0 and T_1 states) compared with the corresponding experimental values.

Figure S36. MO plots of the complex 1.

Figure S37. MO plots of the complex 2.

Figure S39. MO plots of the complex 4.

			Co	mple	x 1			Con	plex	2	
		Energy	Components(%)			Energy	С	ompc	nents(%)	
State	MO	(eV)	Pt	Ľ	ppy	Me	(eV)	Pt	Ľ	bpy	Me
Singlet	LUMO+5	-0.192	4	87	8	1	-0.277	5	67	28	1
	LUMO+4	-0.475	5	86	10	0	-0.566	6	75	19	0
	LUMO+3	-0.684	9	85	5	1	-0.711	10	84	5	1
	LUMO+2	-0.781	8	83	9	0	-0.807	8	87	5	0
	LUMO+1	-0.856	2	14	83	0	-0.936	3	4	93	0
	LUMO	-1.489	6	5	89	0	-1.605	5	4	91	0
	HOMO	-5.701	46	4	50	0	-5.855	57	4	38	1
	HOMO-1	-5.820	83	5	9	3	-5.876	73	6	19	2
	HOMO-2	-6.067	80	5	14	1	-6.171	85	5	9	1
	HOMO-3	-6.311	21	2	77	0	-6.344	23	34	42	0
	HOMO-4	-6.440	15	56	29	0	-6.651	41	42	14	2
	HOMO-5	-6.657	65	23	9	3	-6.781	36	4	59	0
Triplet	HSOMO	-2.862	5	3	92	0	-3.032	5	2	93	0
	LSOMO	-5.685	44	3	52	1	-5.817	50	3	45	2
			Co	mple	x 3			Con	ıplex	4	
		Energy	(Comp	onents(%	<u>(</u>)	Energy	C	ompc	onents(%)
State	MO	(eV)	Pt	Ľ	O-bpy	Me	(eV)	Pt	Ľ	bzq	Me
Singlet	LUMO+5	-0.430	4	91	4	1	-0.180	6	33	61	0
	LUMO+4	-0.619	9	21	70	0	-0.475	6	80	14	0
	LUMO+3	-0.667	15	77	6	2	-0.613	15	79	5	1
	LUMO+2	-0.935	2	93	5	0	-0.859	1	93	6	0
	LUMO+1	-1.010	4	11	85	0	-1.157	3	14	82	0
	LUMO	-1.828	4	3	93	0	-1.674	3	3	94	0
	HOMO	-5.732	9	1	89	0	-5.575	33	4	63	0
	HOMO-1	-5.953	82	3	11	3	-5.837	85	4	8	3
	HOMO-2	-6.076	61	7	32	0	-6.007	75	4	20	1
	HOMO-3	-6.252	72	6	21	1	-6.367	22	41	36	1
	HOMO-4	-6.458	14	35	51	0	-6.431	23	18	59	0
— • • •	HOMO-5	-6.766	15	22	61	1	-6.679	59	19	20	2
Triplet	HSOMO	-	-	-	-	-	-2.928	1	2	97	0
	LSOMO	-	-	-	-	-	-5.618	44	7	49	0

Table S5. The energies of the selected molecular orbitals of complexes 1-4 and their compositions in singlet and triplet state (L'= allyldiphenylphosphane ligand).

Table S6. Wavelengths and corresponding nature of transitions for the complexes 1-4 where L = cyclometal ligands (ppy, bpy, O-bpy and bzq for the complexes 1, 2, 3 and 4 respectively), L' = allyldiphenylphosphane ligand and L'' = Me ligand.

Complex	Calculated λ (nm)(f)	Transitions(Contribution)	Assignment
1	362 (0.028)	HOMO→LUMO (0.66)	ILCT/MLCT
		HOMO-1→LUMO (0.20)	MLCT
	357 (0.017)	HOMO-1→LUMO (0.67)	MLCT
		HOMO \rightarrow LUMO (0.19)	ILCT/MLCT
	324 (0.110)	HOMO-2→LUMO (0.67)	MLCT/ILCT
		HOMO \rightarrow LUMO (0.12)	ILCT/MLCT
	302 (0.037)	HOMO \rightarrow LUMO+1 (0.52)	ILCT/MLCT/ML'CT
		HOMO-3→LUMO (0.41)	ILCT/MLCT
		HOMO \rightarrow LUMO+2 (0.10)	ML'CT/LL'CT
		HOMO-2→LUMO (0.10)	MLCT/ILCT
	287 (0.122)	HOMO-3→LUMO (0.40)	ILCT/MLCT
		HOMO \rightarrow LUMO+1 (0.35)	ILCT/MLCT/ML'CT
		HOMO-5→LUMO (0.33)	L'LCT/MLCT
		HOMO-1→LUMO+2 (0.15)	ML'CT/LL'CT
		HOMO-2→LUMO+1 (0.14)	ILCT/MLCT/ML'CT
2	365 (0.008)	HOMO-1→LUMO (0.58)	MLCT/ILCT
		HOMO \rightarrow LUMO (0.40)	ILCT/MLCT
	356 (0.031)	HOMO \rightarrow LUMO (0.55)	ILCT/MLCT
		HOMO-1 \rightarrow LUMO (0.39)	MLCT/ILCT
		HOMO-2→LUMO (0.16)	MLCT/ILCT
	325 (0.107)	HOMO-2→LUMO (0.66)	MLCT/ILCT
		HOMO-3→LUMO (0.14)	MLCT/ILCT/L'LCT
		HOMO \rightarrow LUMO (0.13)	ILCT/MLCT
	321 (0.014)	HOMO-3 \rightarrow LUMO (0.65)	MLCT/ILCT/L'LCT
		HOMO-4 \rightarrow LUMO (0.16)	MLCT/ILCT/L'LCT
		HOMO-2 \rightarrow LUMO (0.14)	MLCT/ILCT
		HOMO-1 \rightarrow LUMO+1 (0.11)	ILCT/MLCT
	293 (0.041)	HOMO \rightarrow LUMO+1 (0.52)	ILCT/MLCT
		HOMO-1 \rightarrow LUMO+1 (0.38)	ILCT/MLCT
		HOMO-5→LUMO (0.20)	ILCT/MLCT
3	379 (0.013)	HOMO-1 \rightarrow LUMO (0.64)	MLCT/ILCT
		HOMO \rightarrow LUMO (0.27)	ILCT/MLCT
	373 (0.069)	HOMO \rightarrow LUMO (0.55)	ILCT/MLCT
		HOMO-2 \rightarrow LUMO (0.33)	ILCT/MLCT/L'LCT
		HOMO-1 \rightarrow LUMO(0.25)	MLCT/ILCT
	359 (0.046)	HOMO-2 \rightarrow LUMO (0.58)	ILCT/MLCT/L'LCT
		HOMO \rightarrow LUMO (0.29)	ILCT/MLCT
		HOMO-3 \rightarrow LUMO (0.20)	ILCT/MLCT
		HOMO-1 \rightarrow LUMO (0.11)	MLCT/ILCT
	330 (0.098)	HOMO-3→LUMO (0.56)	ILCT/MLCT
		HOMO-4→LUMO (0.29)	ILCT/MLCT/L'LCT
		HOMO-5→LUMO (0.18)	ILCT/MLCT/L'LCT
		HOMO-2 \rightarrow LUMO (0.15)	ILCT/MLCT/L'LCT
		HOMO-2→LUMO+1 (0.12)	ILCT/MLCT
	284 (0.096)	HOMO-2→LUMO+1 (0.56)	ILCT/MLCT
	()	HOMO-3→LUMO+1 (0.24)	ILCT/MLCT
		HOMO \rightarrow LUMO+1 (0.22)	ILCT/MLCT/L'LCT
		HOMO-1 \rightarrow LUMO+1 (0.11)	MLCT/ILCT

4	385 (0.040)	HOMO→LUMO (0.67)	ILCT/MLCT
		HOMO-2→LUMO (0.14)	ILCT/MLCT
		HOMO-1→LUMO (0.10)	MLCT
	368 (0.009)	HOMO-1→LUMO (0.69)	MLCT
	342 (0.060)	HOMO-2→LUMO (0.62)	ILCT/MLCT
		HOMO \rightarrow LUMO+1 (0.23)	ILCT/MLCT/ML'CT
		HOMO-2→LUMO+1 (0.16)	ILCT/MLCT/ML'CT
		HOMO \rightarrow LUMO (0.15)	ILCT/MLCT
	324 (0.188)	HOMO \rightarrow LUMO+1 (0.61)	ILCT/MLCT/ML'CT
		HOMO-4→LUMO (0.22)	ILCT/MLCT/L'LCT
		HOMO-2→LUMO (0.20)	ILCT/MLCT
		HOMO-3→LUMO (0.15)	ILCT/MLCT/L'LCT
	306 (0.053)	HOMO-2→LUMO+1 (0.52)	ILCT/MLCT/ML'CT
		HOMO-3→LUMO (0.30)	ILCT/MLCT/L'LCT
		HOMO-4 \rightarrow LUMO (0.23)	ILCT/MLCT/L'LCT
		HOMO-2→LUMO (0.19)	ILCT/MLCT
		HOMO \rightarrow LUMO+1 (0.13)	ILCT/MLCT/ML'CT
	285 (0.081)	HOMO-6→LUMO (0.38)	ILCT/MLCT/L'LCT
		HOMO-4→LUMO+1 (0.34)	ILCT/MLCT/L'LCT
		HOMO-3→LUMO+1 (0.25)	ILCT/MLCT/L'LCT

Figure S40. Comparitive MO diagram for computed S_0 (left) and T_1 (right) states of the complex **1**.

Figure S41. Comparitive MO diagram for computed S_0 (left) and T_1 (right) states of the complex **2**.

Figure S42. Comparitive MO diagram for computed S_0 (left) and T_1 (right) states of the complex 4.

	Complex 1	Complex 4	Complex B
Empirical formula	C ₂₇ H ₂₆ NPPt	C ₂₉ H ₂₆ NPPt	C ₃₀ H ₂₆ NPPt
Formula weight	590.54	614.56	626.57
Temperature	298(2) K	298(2) K	298(2) K
Wavelength	0.71073 A	0.71073 A	0.71073 A
Crystal system, space group	Monoclinic, <i>P21/n</i>	Triclinic, $P^{\overline{1}}$	Monoclinic, $P2_l/c$
Unit cell dimensions	a = 9.759(2) A	a = 9.1117(18) A	a = 9.6029(19) A
	alpha = 90 deg.	alpha = 95.86(3) deg.	alpha = 90 deg.
	b = 10.351(2) A	b = 11.229(2) A	b = 13.097(3) A
	beta = 100.86(3)deg.	beta = 103.50(3) deg.	beta = 100.17(3)deg.
	c = 23.222(5) A	c = 12.539(3) A	c = 19.630(4) A
	gamma = 90 deg.	gamma = 102.41(3) deg.	gamma = 90 deg.
Volume	2303.8(8) A^3	1202.6(4) A^3	2430.1(9) A^3
Z, Calculated density	4, 1.703 Mg/m^3	2, 1.697 Mg/m^3	4, 1.713 Mg/m^3
Absorption coefficient	6.174 mm^-1	5.917 mm^-1	5.859 mm^-1
F(000)	1152	600	1224
Crystal size	0.45 x 0.20 x 0.15 mm	0.45 x 0.40 x 0.30 mm	0.25 x 0.30 x 0.50 mm
Theta range for data collection	2.14 to 25.00 deg.	2.32 to 25.00 deg.	2.10 to 25.00 deg.
Limiting indices	-11<=h<=11,	-10<=h<=10,	-11<=h<=8,
	-11<=k<=12,	-13<=k<=12,	-15<=k<=14,
	-27<=l<=27	-14<=1<=14	-23<=l<=23
Reflections collected / unique	10787 / 4041 [R(int) = 0.0677]	8788 / 4210 [R(int) = 0.0944]	11136 / 4265 [R(int) = 0.089]
Absorption correction	Numerical	Numerical	Numerical
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	4041 / 0 / 230	4210 / 0 / 290	4265 / 0 / 299
Goodness-of-fit on F ²	0.926	0.952	0.869
Final R indices [I>2sigma(I)]	R1 = 0.0458, $wR2 = 0.0987$	R1 = 0.0424, $wR2 = 0.0952$	R1 = 0.0397, $wR2 = 0.0828$
R indices (all data)	R1 = 0.0777, wR2 = 0.1159	R1 = 0.0546, $wR2 = 0.0982$	R1 = 0.0730, wR2 = 0.0952
CCDC No.	1509609	1509608	1538745

Table S7. Crystallographic and structure refinement data for the complexes 1, 4 and B.