Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

JOURNAL: NEW JOURNAL OF CHEMISTRY

Manuscript ID NJ-ART-01-2017-000057

Title: B-H_b···π interaction in borane-graphene complexes: Coronene as a case study

Bapan Saha and Pradip Kr. Bhattacharyya*

Supplementary Fig. S1 Gas phase optimized structures with their respective charge, multiplicity and energy (kcal mol⁻¹) for (a) Cor (b) $Cor_{(2N)}$ (c) $Cor_{(2N)}$ (d) $Cor_{(3N)}$ (e) $Cor_{(B)}$ (f) $Cor_{(2B)}$ (g) $Cor_{(3B)}$ (h) $Cor_{(BN)}$ (j) $Cor_{(3BN)}$ obtained at M06-2X/6-31++G(d,p) level of theory.

Supplementary Fig. S2 Plot of E_{HOMO} vs SE with R^2 values for the complexes formed by (a) $Cor_{(B)}$ (b) $Cor_{(2B)}$ (c) $Cor_{(3B)}$ (d) $Cor_{(BN)}$ (e) $Cor_{(2BN)}$ (f) $Cor_{(3BN)}$ obtained at M06-2X/6-31++G(d,p) level of theory.

Supplementary Fig. S3 Shapes of E_{HOMO} for (a) Cor (b) $Cor_{(N)}$ (c) $Cor_{(2N)}$ (d) $Cor_{(3N)}$ (e) $Cor_{(2B)}$ (f) $Cor_{(2B)}$ (g) $Cor_{(3B)}$ (h) $Cor_{(BN)}$ (i) $Cor_{(2BN)}$ (j) $Cor_{(3BN)}$ obtained at M06-2X/6-31++G(d,p) level of theory.

Supplementary Fig. S4 Plot of ΔE vs SE for the complexes formed by (a) Cor (b) $Cor_{(N)}$ (c) $Cor_{(2N)}$ (d) $Cor_{(3N)}$ (e) $Cor_{(2B)}$ (g) $Cor_{(3B)}$ (h) $Cor_{(2BN)}$ (i) $Cor_{(2BN)}$ (j) $Cor_{(3BN)}$ obtained at M06-2X/6-31++G(d,p) level of theory.

System/	Charge,	Charge	System/	Charge,	Charge	System/	Charge,	Charge
Complex	q at H_{b}	Transfer, ∆q	Complex	q at H_{b}	Transfer, ∆q	Complex	q at H_{b}	Transfer, ∆q
DB	0.114	-	ТВ	0.200	-	PB	0.173	-
Cor…DB	0.104	0.010	Cor…TB	0.197	0.003	Cor…PB	0.169	0.004
Cor _(N) …DB	0.098	0.016	Cor _(N) …TB	0.192	0.008	Cor _(N) …PB	0.164	0.009
Cor _(2N) …DB	0.097	0.017	Cor _(2N) …TB	0.181	0.019	Cor _(2N) …PB	0.153	0.020
Cor _(3N) …DB	0.094	0.020	Cor _(3N) …TB	0.177	0.023	Cor _(3N) …PB	0.150	0.023
Cor _(B) …DB	0.108	0.007	Cor _(B) …TB	0.201	-0.001	Cor _(B) …PB	0.173	0.000
Cor _(2B) …DB	0.114	0.000	Cor _(2B) …TB	0.206	-0.006	Cor _(2B) …PB	0.180	-0.007
Cor _(3B) …DB	0.110	0.004	Cor _(3B) …TB	0.206	-0.006	Cor _(3B) …PB	0.175	-0.002
Cor _(BN) …DB	0.107	0.007	Cor _(BN) …TB	0.197	0.002	Cor _(BN) …PB	0.166	0.007
Cor _(2BN) …DB	0.097	0.017	Cor _(2BN) …TB	0.195	0.005	Cor _(2BN) …PB	0.163	0.010
Cor _(3BN) …DB	0.096	0.018	Cor _(3BN) …TB	0.186	0.014	Cor _(3BN) …PB	0.158	0.015

Supplementary Table S1 NPA charge (NBO analysis) for free boranes and their complexes obtained at M06-2X/6-31++G(d,p) level of theory.

System/complex	B-H _b distance	System/complex	B-H _b distance	B-H _b distance	System/complex	B-H _b distance
DB	1.3128	ТВ	1.2517	1.4112	PB	1.3419
Cor…DB	1.3089	Cor…TB	1.2543	1.4129	Cor…PB	1.3411
Cor _(N) …DB	1.3067	Cor _(N) …TB	1.2540	1.4124	Cor _(N) …PB	1.3393
Cor _(2N) …DB	1.3121	Cor _(2N) …TB	1.2541	1.4188	Cor _(2N) …PB	1.3390
Cor _(3N) …DB	1.3118	Cor _(3N) …TB	1.2534	1.4149	Cor _(3N) …PB	1.3387
Cor _(B) …DB	1.3070	Cor _(B) …TB	1.2545	1.4195	Cor _(B) …PB	1.3392
Cor _(2B) …DB	1.3061	Cor _(2B) …TB	1.2549	1.4135	Cor _(2B) …PB	1.3396
Cor _(3B) …DB	1.3089	Cor _(3B) …TB	1.2545	1.4126	Cor _(3B) …PB	1.3403
Cor _(BN) …DB	1.3111	Cor _(BN) …TB	1.2546	1.4128	Cor _(BN) …PB	1.3396
Cor _(2BN) …DB	1.3078	Cor _(2BN) …TB	1.2540	1.4121	Cor _(2BN) …PB	1.3357
Cor _(3BN) …DB	1.3108	Cor _(3BN) …TB	1.2525	1.4142	Cor _(3BN) …PB	1.3387

Supplementary Table S2 The B-H_b distance (in Å) in free borane and in their complexes obtained at M06-2X/6-31++G(d,p) level of theory

Supplementary Table S3 E_{HOMO} , E_{LUMO} and ΔE (in kcal mol⁻¹) of undoped/doped Cor and their respective complexes in cyclohexane (ch) and water (wat) obtained at M06-2X/6-31++G(d,p) level of theory.

Systems	E _{HOMO(ch)}	E _{LUMO(ch)}	$\Delta E_{(ch)}$	E _{HOMO(wat)}	E _{LUMO(wat)}	$\Delta E_{(wat)}$
Cor	-158.23	-23.61	134.62	-160.99	-26.56	134.43
Cor _(N)	-98.47	-22.36	76.11	-100.92	-24.60	76.32
Cor _(2N)	-95.02	-27.67	67.35	-97.43	-29.58	67.85
Cor _(3N)	-98.36	-21.41	76.95	-100.26	-23.27	76.99
Cor _(B)	-156.19	-24.60	131.58	-158.71	-27.32	131.39
Cor _(2B)	-153.19	-88.49	64.71	-158.18	-91.30	66.88
Cor _(3B)	-151.30	-81.48	69.82	-154.33	-84.51	69.82
Cor _(BN)	-149.81	-30.38	119.43	-152.69	-32.81	119.89
Cor _(2BN)	-144.84	-34.65	110.18	-147.63	-36.72	110.82
Cor _(3BN)	-146.08	-33.84	112.24	-148.23	-35.84	112.38
Cor…DB	-158.79	-24.81	133.98	-161.53	-27.43	134.10
Cor…TB	-159.35	-25.08	134.27	-161.53	-27.14	134.39
Cor…PB	-161.83	-27.57	134.26	-162.59	-28.22	134.37
Cor _(N) …DB	-99.37	-23.14	76.23	-102.03	-25.60	76.43
Cor _(N) …TB	-99.74	-23.78	75.96	-101.86	-25.73	76.13
Cor _(N) …PB	-102.89	-26.29	76.60	-103.57	-26.83	76.74
Cor _(2N) …DB	-95.61	-28.44	67.17	-98.32	-30.60	67.72
Cor _(2N) …TB	-96.64	-28.90	67.74	-99.00	-30.83	68.17
Cor _(2N) …PB	-99.68	-31.26	68.42	-100.43	-31.74	68.69
Cor _(3N) …DB	-99.46	-22.84	76.62	-101.76	-25.04	76.72
Cor _(3N) …TB	-99.75	-23.25	76.50	-101.77	-25.21	76.56
Cor _(3N) …PB	-102.16	-26.26	75.90	-102.67	-26.71	75.96
Cor _(B) …DB	-156.86	-26.55	130.32	-159.46	-29.30	130.16
Cor _(B) …TB	-157.10	-26.16	130.94	-159.21	-28.42	130.79
Cor _(B) …PB	-159.37	-28.86	130.52	-160.11	-29.61	130.51
Cor _(2B) …DB	-153.89	-88.52	65.37	-157.15	-91.11	66.04
Cor _(2B) …TB	-154.53	-88.89	65.64	-157.18	-90.88	66.30
Cor _(2B) …PB	-157.24	-91.70	65.53	-158.45	-92.26	66.20
Cor _(3B) …DB	-151.80	-81.19	70.61	-154.47	-83.89	70.58
Cor _(3B) …TB	-152.06	-82.41	69.65	-154.38	-84.64	69.74
Cor _(3B) …PB	-154.47	-85.44	69.03	-155.32	-86.19	69.13
Cor _(BN) …DB	-150.45	-31.10	119.35	-153.45	-33.67	119.77
Cor _(BN) …TB	-150.94	-31.61	119.33	-153.50	-33.76	119.74
Cor _(BN) …PB	-153.74	-34.49	119.25	-154.53	-34.85	119.58
Cor _(2BN) …DB	-145.54	-35.44	110.1	-148.56	-37.76	110.80
Cor _(2BN) …TB	-145.92	-35.89	110.08	-148.52	-37.71	110.81
Cor _(2BN) …PB	-148.59	-38.32	110.28	-149.48	-38.59	110.89
Cor _(3BN) …DB	-146.59	-34.40	112.19	-149.02	-36.68	112.34
Cor _(3BN) …TB	-147.20	-35.18	112.02	-149.18	-36.97	112.21
Cor _(3BN) …PB	-149.42	-37.60	111.82	-150.02	-37.98	112.04

complex	BSSE correction	complex	BSSE correction	complex	BSSE correction
Cor…DB	0.81	_	-	-	-
Cor…TB	1.10	-	-	-	-
Cor…PB	1.38	-	-	-	-
Cor _(N) …DB	0.80	Cor _(B) …DB	0.68	Cor _(BN) …DB	0.71
Cor _(N) …TB	1.07	Cor _(B) …TB	0.91	Cor _(BN) …TB	0.95
Cor _(N) …PB	1.36	Cor _(B) …PB	1.22	Cor _(BN) …PB	1.28
Cor _(2N) …DB	0.86	Cor _(2B) …DB	0.72	Cor _(2BN) …DB	0.71
Cor _(2N) …TB	1.16	Cor _(2B) …TB	0.98	Cor _(2BN) …TB	0.93
Cor _(2N) …PB	1.48	Cor _(2B) …PB	1.37	Cor _(2BN) …PB	1.28
Cor _(3N) …DB	0.93	Cor _(3B) …DB	0.81	Cor _(3BN) …DB	0.67
Cor _(3N) …TB	1.21	Cor _(3B) …TB	1.00	Cor _(3BN) …TB	0.86
Cor _(3N) …PB	1.61	Cor _(3B) …PB	1.42	Cor _(3BN) …PB	1.16

Supplementary Table S4 BSSE correction (in kcal mol⁻¹) for the complexes of undoped/doped Cor with boranes obtained at M06-2X/6-31++G(d,p) level of theory.

Systems	$\lambda_{\text{max}} \text{ in nm}$	Oscillator strength, f	Excitation energy in eV	Dominant transition	Orbital contribution
Cor	307.6	0.985	4.03	HOMO-1→LUMO+1	0.465
				HOMO→LUMO	0.462
Cor _(N)	376.9	0.068	3.30	(HOMO-2)A→LUMOA	0.566
()				(НОМО-2)В→НОМОВ	0.496
	581.0	0.035	2.13	HOMOA→(LUMO+3)A	0.972
				(HOMO-2)B→LUMOB	0.131
Cor _(2N)	352.2	0.055	3.52	HOMO-2→LUMO	0.583
(214)				HOMO-1→LUMO+1	0.375
	542.4	0.140	2.29	HOMO→LUMO+3	0.684
Cor _(3N)	579.9	0.181	2.14	HOMOA→(LUMO+2)A	0.588
(311)				$(HOMO-1)B \rightarrow (LUMO+2)B$	0.768
Cor _(B)	329.7	0.134	3.76	(HOMO-1)A→(LUMO+1)A	0.531
(-)				(HOMO-1)B→LUMOB	0.531
	503.7	0.046	2.46	(HOMO-1)A→LUMO A	0.240
				(HOMO-5)B→LUMO B	0.911
Cor _(2B)	300.7	0.582	4.12	HOMO-2→LUMO+1	0.347
				HOMO-1→LUMO+2	0.418
	495.5	0.145	2.50	HOMO-4→LUMO	0.677
				HOMO→LUMO+1	0.108
Cor _(3B)	573.2	0.207	2.16	(HOMO-3)A→LUMO A	0.796
V - V				(НОМО-3)В→НОМОВ	0.571
Cor _(BN)	250.8	0.248	4.94	HOMO-1→LUMO+1	0.289
				HOMO→LUMO+2	0.500
	327.9	0.530	3.78	HOMO-3→LUMO	0.517
				HOMO-2→LUMO+2	0.309
Cor _(2BN)	274.9	0.204	4.51	HOMO-1→LUMO+1	0.144
				HOMO→LUMO	0.634
	345.2	0.580	3.59	HOMO-3→LUMO	0.606
				HOMO→LUMO+3	0.235
Cor _(3BN)	272.7	0.083	4.55	HOMO-1→LUMO	0.351
				HOMO→LUMO+1	0.344
	357.9	1.186	3.46	HOMO-1→LUMO+3	0.483
				HOMO→LUMO+2	0.483

Supplementary Table S5 λ_{max} values and their corresponding oscillator strength (*f*), excitation energy (E) with dominant transition for undoped/doped Cor in THF obtained at B3LYP/6-31++G(d,p) level of theory.

Complexes	λ_{max} in nm	Oscillator strength, f	Excitation energy in eV	Dominant transition	Orbital contribution
Cor…DB	308.9	0.904	4.01	HOMO-1→LUMO	0.484
				HOMO→LUMO+1	0.494
Cor…TB	308.2	0.899	4.02	HOMO-1→LUMO	0.472
				HOMO→LUMO+1	0.473
Cor…PB	308.6	0.034	4.02	HOMO-1→LUMO	0.488
				HOMO→LUMO+1	0.487
Cor _(N) …DB	389.5	0.034	3.18	(HOMO-1)A→LUMOA	0.498
. ,				(НОМО-1)В→НОМОВ	0.715
	583.8	0.030	2.12	HOMOA→(LUMO+4)A	0.968
				(HOMO-2)B →LUMOB	0.124
Cor _(N) …TB	387.8	0.032	3.20	(HOMO-1)A→LUMOA	0.465
				(НОМО-1)В→НОМОВ	0.663
	592.4	0.030	2.09	HOMOA→(LUMO+3)A	0.973
				(HOMO-2)B→LUMOB	0.124
Cor _(N) …PB	390.0	0.035	3.18	(HOMO-1)A→(LUMO+1)A	0.490
. ,				(HOMO-1)B→LUMOB	0.729
	581.1	0.030	2.13	HOMOA→(LUMO+3)A	0.973
				(HOMO-2)B→LUMOB	0.126
Cor _(2N) …DB	353.1	0.034	3.51	HOMO-2→LUMO	0.553
()				HOMO-1 →LUMO+1	0.394
	548.7	0.124	2.26	HOMO →LUMO+4	0.685
Cor _(2N) …TB	352.9	0.044	3.51	HOMO-2→LUMO	0.583
()				HOMO-1 →LUMO+1	0.364
	555.5	0.112	2.23	HOMO →LUMO+3	0.685
Cor _(2N) …PB	353.0	0.041	3.51	HOMO-2→LUMO	0.596
\ <i>;</i>				HOMO-1 →LUMO+2	0.319
	544.3	0.114	2.28	HOMO →LUMO+3	0.686
Cor _(3N) …DB	583.2	0.157	2.13	HOMOA →(LUMO+2)A	0.584
(514)				(HOMO-1)B →(LUMO+3)B	0.761
Cor _(3N) …TB	589.3	0.148	2.10	HOMOA \rightarrow (LUMO+2)A	0.582
(5.1)				(HOMO-1)B →(LUMO+2)B	0.769
Cor _(3N) …PB	584.5	0.156	2.12	HOMOA \rightarrow (LUMO+2)A	0.583
(3.1)				$(HOMO-1)B \rightarrow (LUMO+2)B$	0.770

Supplementary Table S6 λ_{max} values with corresponding oscillator strength (*f*), excitation energy (E) with dominant transition in complexes of undoped/N-doped Cor in THF obtained at B3LYP/6-31++G(d,p) level of theory.

Complexes	$\lambda_{\text{max}} \text{in nm}$	Oscillator	Excitation	Dominant transition	Orbital
		strength, f	energy in eV		contribution
Cor _(B) …DB	342.3	0.087	3.62	(HOMO-2)A→(LUMO+1)A	0.429
				(HOMO-1)B→(LUMO+1)B	0.596
	509.4	0.046	2.43	(HOMO-1)A→LUMOA	0.250
				(НОМО-5)В→НОМОВ	0.910
Cor _(B) …TB	331.5	0.070	3.74	(HOMO-1)A→(LUMO+1) A	0.442
				(НОМО-9)В→НОМОВ	0.504
	507.4	0.043	2.44	(HOMO-1)A→LUMOA	0.237
				(НОМО-5)В→НОМОВ	0.911
Cor _(B) …PB	342.4	0.067	3.62	(HOMO-2)A→(LUMO+1)A	0.443
				(HOMO-1)B→(LUMO+1)B	0.600
	507.0	0.043	2.45	(HOMO-1)A→LUMOA	0.243
				(НОМО-5)В→НОМОВ	0.909
Cor _(2B) …DB	301.7	0.515	4.12	HOMO-2→LUMO+2	0.452
				HOMO-1→LUMO+1	0.323
	488.9	0.119	2.54	HOMO-6→LUMO	0.349
				HOMO-4→LUMO	0.583
Cor _(2B) …TB	303.2	0.332	4.09	HOMO-10→LUMO	0.331
				HOMO-1→LUMO+2	0.277
	488.0	0.112	2.54	HOMO-6→LUMO	0.388
				HOMO-4→LUMO	0.558
Cor _(2B) …PB	301.9	0.481	4.12	HOMO-2→LUMO+1	0.357
				HOMO-1→LUMO+2	0.406
	489.1	0.111	2.53	HOMO-6→LUMO	0.385
				HOMO-4→LUMO	0.556
Cor _(3B) …DB	582.8	0.176	2.13	(HOMO-3)A→LUMOA	0.796
				(НОМО-3)В→НОМОВ	0.563
Cor _(3B) …TB	591.2	0.167	2.10	(HOMO-3)A→LUMOA	0.797
				(НОМО-3)В→НОМОВ	0.569
Cor _(3B) …PB	581.2	0.163	2.13	(HOMO-3)A→LUMOA	0.777
(55)				(НОМО-3)В→НОМОВ	0.570
				•	

Supplementary Table S7 λ_{max} values with corresponding oscillator strength (*f*), excitation energy (E) with dominant transition in complexes of B-doped Cor in THF obtained at B3LYP/6-31++G(d,p) level of theory

Complexes	λ_{max} in nm	Oscillator	Excitation	Dominant transition	Orbital
		strength, f	energy in eV		contribution
Cor _(BN) …DB	244.9	0.002	5.06	HOMO→LUMO+7	0.589
				HOMO→LUMO+8	0.305
	328.1	0.542	3.78	HOMO-1→LUMO+1	0.552
				HOMO→LUMO	0.254
Cor _(BN) …TB	247.9	0.248	5.00	HOMO-2→LUMO+2	0.352
				HOMO→LUMO+7	0.378
	328.9	0.503	3.77	HOMO-1→LUMO+1	0.523
				HOMO→LUMO+2	0.293
Cor _(BN) …PB	248.5	0.096	4.27	HOMO-2→LUMO+1	0.492
				HOMO→LUMO+3	0.371
	327.1	0.504	3.79	HOMO-1→LUMO+1	0.535
				HOMO→LUMO+2	0.285
Cor _(2BN) …DB	276.5	0.202	4.48	HOMO-2→LUMO+1	0.138
				HOMO→LUMO+4	0.630
	347.3	0.511	3.57	HOMO-1→LUMO+1	0.554
				HOMO→LUMO+2	0.287
Cor _(2BN) …TB	280.3	0.208	4.42	HOMO-2→LUMO+1	0.284
				HOMO→LUMO+3	0.575
	346.8	0.511	3.57	HOMO-1→LUMO+1	0.596
				HOMO→LUMO+2	0.233
Cor _(2BN) …PB	276.2	0.186	4.49	HOMO-2→LUMO+1	0.182
				HOMO→LUMO+3	0.613
	346.8	0.492	3.58	HOMO-1→LUMO+1	0.579
				HOMO→LUMO+2	0.270
Cor _(3BN) …DB	274.3	0.059	4.52	HOMO-1→LUMO+3	0.243
				HOMO→LUMO+4	0.612
	358.4	1.084	3.46	HOMO-1→LUMO	0.490
				HOMO→LUMO+1	0.488
Cor _(3BN) …TB	274.7	0.061	4.51	HOMO-1→LUMO+4	0.532
				HOMO→LUMO+2	0.309
	359.0	1.063	3.45	HOMO-1→LUMO	0.379
				HOMO→LUMO+1	0.377
Cor _(3BN) …PB	274.9	0.084	4.51	HOMO-1→LUMO+4	0.543
				HOMO→LUMO+2	0.339
	358.6	1.076	3.46	HOMO-1→LUMO+1	0.506
				HOMO→LUMO	0.489

Supplementary Table S8 λ_{max} values with corresponding oscillator strength (*f*), excitation energy (E) with dominant transition in complexes of BN-doped Cor in THF obtained at B3LYP/6-31++G(d,p) level of theory.