Supporting information for

A mitochondria-targetable fluorescent probe with large Stokes shift for detecting hydrogen peroxide in aqueous solution and living cells

Yong Liu, ^a Jie Niu, ^a Jing Nie, ^b Fangfang Meng ^a and Weiying Lin^{a*}

^a Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, P. R. China. E-mail: <u>weiyinglin2013@163.com</u>

^b School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangshu, 221116, P.R. China..

Table of contents

	Page
Table S1	S3-6
Fig S1	S6
Figs S2-S3	S7
Figs S4-S5	S8
Table S2, Figs S6-S7.	S9
Figs S8-S9	S10
Fig S10-S11	S11
References	S12-14

Table S1. Properties of the representative hydrogen peroxide probesdeveloped and the CAI reported in this work.

Ref.	Core structure	Stokes shift in aqueous solution	Probe Type	Maximum absorption wavelength and emission wavelength <i>in</i> <i>aqueous solution</i>	Application
This work	Carbazole- based derivatives CAI	157 nm	Turn off	418/575 nm	Detecting hydrogen peroxide in pure water and mitochondria <i>via</i> fluorescence quenching
1	NBzF	24 nm	Turn on	495/519 nm	Highly Sensitive detecting hydrogen peroxide
2	SERS nanoprobe	_	Turn on	_	Ratiometric imaging of hydrogen peroxide in living cells
3	MI-H ₂ O ₂	_	Turn on	425 /-nm	Simultaneous fluorescence imaging of hydrogen peroxide in mitochondria
4	Cy-B	_	Turn on	575/- nm	Imaging endogenous hydrogen peroxide during an autophagy process induced by rapamycin
5	Polymer 3	20 nm			Highly

					efficient
			Turn off	330/ 350 nm	detection of
					hydrogen
					peroxide in
					solution
					Highly
	Prototypo		Turn on	_	Sensitive
6	proba 1	_			detecting
	probe 1				hydrogen
					peroxide
					Rapid-
					Response
			Turn	400/500nm	detecting
7	TPE-BO	100 nm	on		hydrogen
					peroxide in
					living
					cells
					highly
			Turn	_	selective
8	D-HMSE	_	on		detecting
					hydrogen
					peroxide
	QCy-BA- Drew-	90 nm	Turn on	410 /500 nm	Reporting of
0					cellular
9					hydrogen
	AI				peroxide
					Highly
			Turn on	_	sensitive
10	TPE-HPro	_			detection of
10					hydrogen
					peroxide
					and glucose
					Recognition of
11	Ir-2	_	Turn on	_	hydrogen
					peroxide
					Hydrogen
12	DCM-B2	_	Turn on	_	peroxide
					imaging <i>in</i>
					vitro and in
					vivo
					Imaging of
13	$CBZ-H_2O_2$	_			mitochondrial
15			Turn on		hydrogen

					peroxide in
					living cells
					and tissues
					Dual-Imaging
14	Mito VII		Turn on	_	viscosity and
14	WIIIO- V 11	_			H ₂ O ₂ in
					Mitochondria
					Imaging H ₂ O ₂
15	CSPOU	100 nm	Turn on	570 /670 nm	imaging in
15	CSBOII	100 1111			<i>vitro</i> and in
					vivo
	FD H.O.				Imaging H ₂ O ₂
16	NO	_	Turn on	_	in <i>vitro</i> and in
	NO				vivo
					Imaging
			Turn on	365 /-nm	mitochondrial
17	Mito-H ₂ O ₂	_			hydrogen
					peroxide in
					living cells
18	DF1		Turn on	_	Imaging H_2O_2
10	ΓΓ'Ι	_			in living cells
	MitoDV1ov	19 nm	Turn on	510 / 528nm	Imaging
10					mitochondrial
19	WINOF I TOX	18 1111			H ₂ O ₂ in living
					cells
			Turn on	_	Imaging H_2O_2
20	probe 3	_			in <i>vitro</i> and in
					vivo
					Noninvasive
			Turn on	560/-nm	intravital
21	OCy7				optical
21	QCy/	—			imaging of
					hydrogen
					peroxide
			Turn on	352/400 nm	Detection of
					hydrogen
22	pep3-NP1	48 nm			peroxide near
					mitochondrial
					DNA
					Spatially-
23	L1	64 nm	Turn on	520 /584nm	Confined
					visualization
					of intracellular
					hydrogen

					peroxide	
24	Mito- NIRHP	60 nm	Turn on	650/710 nm	Imaging H ₂ O ₂	
					in <i>vitro</i> and in	
					vivo	
					Detection of	
25	NP1	_	Turn on	_	cytoplasmic	
					and nuclear	
					hydrogen	
					peroxide	

Fig S1. (a) UV-vis absorption (b) and fluorescence spectra of CAI in various solvents. Concentration of CAI: 2 μ M.

Fig S2. Time course of the fluorescence intensity of CAI (2 μ M) at 575 nm after adding 80 equiv. H₂O₂. λ_{ex} = 405 nm.

Fig S3. (a) The ¹H NMR spectrum of the methyl peak of **CAI** in the absence and presence of H_2O_2 (100 equiv) in d_6 - DMSO/D₂O (2:1); (b) The ¹H NMR spectrum of the hydroxy peak of **CAI** in the absent and present of H_2O_2 (100 equiv) in d_6 - DMSO/D₂O (2:1).

Fig S4. The formation of 1-ethyl-4-(2-(9-ethyl-6-hydroxy-9*H*-carbazol-3yl)vinyl)pyridin-1-ium iodide from the reaction of the probe with H_2O_2 was confirmed by H RMS (ESI). The intense peak at m/z 342.1746 in the H RMS (ESI) spectrum corresponds to 1-ethyl-4-(2-(9-ethyl-6-hydroxy-9H-carbazol-3yl)vinyl)pyridin-1-ium iodide.

Fig S5. Fluorescent response of the probe CAI (2 μ M) to H₂O₂ (110 equiv.) in different pH PBS buffer solution.

Incubated concentration	0	5	15	20	30	
(µM)						
(% cell survival)	100 ± 4	96±4	77 ± 4	71 ± 4	62 ± 4	

Table S2.Cytotoxicity data of CAI in RAW 264.7 cells ^a at 8 h.

 $^{\rm a}$ Cell viability was quantified by the MTT assays (mean \pm SD).

Fig S6. Photostbility of the probe CAI (2 $\mu M)$ in the absence and presence of $H_2O_2.$ λ_{ex} = 405 nm

Characterization

Fig S7. ¹H NMR spectrum of compound 2 in CDCl₃

Fig S8. ¹³C NMR spectrum of compound 2 in CDCl₃

Fig S10. ¹³C NMR spectrum of CAI

Fig S11. High resolution mass spectrum (HRMS) (ESI) of CAI

References:

- M. Abo, Y. Urano, K. Hanaoka, T. Terai, T. Komatsu and T. Nagano, J. Am. Chem. Soc., 2011, 133, 10629.
- R. Peng, Y. Si, T. Deng, J. Zheng, J. Li, R. Yang and W. Tan, Chem. Commun., 2016, 52, 8553.
- H. Xiao, P. Li, X. Hu, X. Shi, W. Zhang and B. Tang, *Chem. Sci.*, 2016, 7, 6153
- F. Xu, H. Li, Q. Yao, J. Fan, J. Wang and X. Peng, J. Mater. Chem. B, 2016, 4, 7363
- P. Marks, B. Radaram, M. Levine and I. A. Levitsky, *Chem. Commun.*, 2015, 51, 7061.
- 6. L. -C. Lo and C. -Y. Chu, Chem. Commun., 2003, 2728.
- W. Zhang, W. Liu, P. Li, F. Huang, H. Wang and B. Tang, Anal. Chem., 2015, 87, 9825.
- Y. -X. Liao, K. Li, M. -Y. Wu, T. Wu and X. -Q. Yu, Org. Biomol. Chem., 2014, 12, 3004.
- N. Narayanaswamy, S. Narra, R. R. Nair, D. K. Saini, P. Kondaiah and T. Govindaraju, *Chem. Sci.*, 2016, 7, 2832.
- 10. Z. Song, R. T. K. Kwok, D. Ding, H. Nie, J. W. Y. Lam, B. Liuc and B. Z. Tang, *Chem. Commun.*, 2016, **52**, 10076.
- 11. C. Li, S. Wang, Y. Huang, Q. Wen, L. Wang and Y. Kan, *Dalton. Trans.*, 2014, **43**, 5595.

- 12. P. Wang, K. Wang, D. Chen, Y. Mao and Y. Gu, *RSC Adv.*, 2015, 5, 85957.
- 13. K. Zhang, W. Wu, Y. Li, M. Sun, H. Yu and M. S. Wong, *RSC Adv.*, 2016, 6, 115298.
- M. Ren, B. Deng, K. Zhou, X. Kong, J. –Y. Wang and W. Lin, *Anal. Chem.*, 2016, DOI: 10.1021/acs.analchem.6b04385.
- 15. K. Liu, H. Shang, X. Kong, M. Ren, J. –Y. Wang, Y. Liu, W. Lin, *Biomaterials*, 2016, **100**, 162.
- L. Yuan, W. Lin, Y. Xie, B. Chen and S. Zhu, J. Am. Chem. Soc., 2012, 134, 1305.
- 17. J. Xu, Y. Zhang, H.Yu, X. Gao and S. Shao, Anal. Chem., 2016, 88, 1455.
- 18. M. C. Y. Chang, A. Pralle, E. Y. Isacoff and C. J. Chang, J. Am. Chem. Soc., 2004, **126**, 15392.
- 19. B. C. Dickinson and C. J. Chang, J. Am. Chem. Soc., 2008, 130, 9638.
- 20. W. Wu, J. Li, L. Chen, Z. Ma, W. Zhang, Z. Liu, Y. Cheng, L. Du and M. Li, *Anal. Chem.*, 2014, **86**, 9800.
- N. Karton-Lifshin, E. Segal, L. Omer, M. Portnoy, R. Satchi-Fainaro and D. Shabat, J. Am. Chem. Soc., 2011, 133, 10960.
- 22. Y. Wen, K. Liu, H. Yang, Y. Liu, L. Chen, Z. Liu, C. Huang and T. Yi, *Anal. Chem.*, 2015, **87**, 10579.
- J. Liu, J. Ren, X. Bao, W. Gao, C. Wu and Y. Zhao, *Anal. Chem.*, 2016, 88, 5865.

- 24. X. Xie, X. Yang, T. Wu, Y. Li, M. Li, Q. Tan, X. Wang and B. Tang, *Anal. Chem.*, 2016, **88**, 8019.
- 25. Y. Wen, K. Liu, H. Yang, Y. Li, H. Lan, Y. Liu, X. Zhang and T. Yi, *Anal. Chem.*, 2014, **86**, 9970.