Supporting Information

Table S1.Crystal data and structure refinement for ct-[RuCl(CO)(dppb)(bipy)]PF₆(1) and cc-[RuCl(CO)(dppb)(phen)]PF₆ (6).

Table S2. Selected angles for for ct-[RuCl(CO)(dppb)(bipy)]PF₆ and cc-[RuCl(CO)(dppb)(bipy)]PF₆.

Table S3. Contributions, %, of the composing atoms in the frontier orbitals of the Rucomplexes ct-[RuCl(CO)(dppb)(bipy)]PF₆ (**1**), tc-[RuCl(CO)(dppb)(bipy)]PF₆ (**3**) and cc-[RuCl(CO)(dppb)(bipy)]PF₆ (**5**) calculated using the B3LYP/[Ru:SDD;C,H,P,N,Cl:6-311+G**] approach.

Table S4. Natural Bonding Orbitals (NBO) charges on the Ru and Ru-bound atoms of the complexes tc-[RuCl(CO)(dppb)(bipy)]PF₆ (**3**), cc-[RuCl(CO)(dppb)(bipy)]PF₆ (**5**), and ct-[RuCl(CO)(dppb)(bipy)]PF₆ (**1**), calculated using the B3LYP/[Ru:SDD;C,H,P,N,Cl:6-311+G**] approach.

Figure S1. (C) ¹³C{¹H} NMR spectrum of *ct*-[RuCl(CO)(dppb)(bipy)]PF₆ complex in DMSO- d_6 at 300 K (A) Expanded regions of 110 – 200 ppm, (B) 5 – 30 ppm at different times.

Figure S2. (C) ¹³C{¹H } NMR spectrum of *cc*-[RuCl(CO)(dppb)(bipy)]PF₆ isomer in DMSO d_6 at 300 K, (A) Expanded regions of 120 – 210 ppm and (B) 21 – 31 ppm at different times.

Figure S3. (C) ¹³C{¹H } NMR spectrum of *tc*-[RuCl(CO)(dppb)(bipy)]PF₆ complex in DMSO- d_6 at 300 K. (A) Expanded regions of 110 – 200 ppm and (B) 23 – 31 ppm at different times.

Figure S4. A) ${}^{31}P{}^{1}H$ NMR spectrum of solution after electrolysis of *ct*-[RuCl(CO)(dppb)(bipy)]PF₆ isomer in CH₃CN and B) cyclic voltammogram of the *ct*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆ in CH₃CN.

Figure S5. A) ${}^{31}P{}^{1}H{}$ spectrum of solution after electrolysis of *tc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆ carried out for 3 h; B) cyclic voltammogram of *tc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆, C) ${}^{31}P$ NMR spectra of solution after electrolysis of *cc*-[RuCl(CO)(dppb)(bipy)]PF₆ for 4 h and D) cyclic voltammogram of *cc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆. Conditions: Pt electrode *vs* Ag/AgCl, TBAP 0.1 mol L⁻¹ in CH₃CN.

Figure S6. ¹³C{¹H} NMR spectra of electrolysis products. A) *ct*-[RuCl(CH₃CN)(dppb)(bipy)PF₆, B) *tc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆ and C) *cc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆ in DMSO- d_6 .

Table S1.Crystal data and structure refinement for ct-[RuCl(CO)(dppb)(bipy)]PF₆(1) and cc-[RuCl(CO)(dppb)(phen)]PF₆(6).

Data	Complex (1)	Complex (6)
Empirical formula	$C_{39}H_{36}ClF_6N_2OP_3Ru$	$C_{41}H_{36}ClF_6N_2OP_3Ru$
Molecular weight	892.13	916.15
Color	Yellow	Yellow
Crystal system	Monoclinic	Monoclinic
Space group	P21/c	P21/c
Unit cell dimensions	a = 14.6581(2)	a = 12.4950(4) Å
(Å; °)	b = 16.2338(2);	b = 16.3401(6);
	c = 16.5500(2)	c = 19.2663(6)
	$\beta = 92.759(1)$	$\beta = 101.08$
Volume (Å ³)	3933.62(9)	3860.2(2)
Unit cell, Z	4	4
Crystal size (mm ³)	0.22 x 0.22 x 0.19	0.05 x 0.09 x 0.40
Density (calculated; Mg/m^3)	1.506	1.576
Temperature (K)	293(2)	293(2)
Absorption	0.651	0.666
coefficient (mm ⁻¹)		
F(000)	1808	1856
Wavelength (Mo-	0.71073	0.71073
$K\alpha$) (Å)		
Theta range for data	3.10 to 32.03	2.963 to 26.374
collection (°)		15 1 15
Index ranges	$-18 \le h \le 18;$	-15<=h<=15;
	$-20 \le k \le 20;$	-20<=k<=20;
	$-21 \le l \le 24$	-24<=l<=24
Completeness to theta	79.6 %	99.4 %
Reflections collected	10900	28914
Data / restraints /	10900 / 478	7863 / 0 / 496
parameters		
R1 wR2 $[I>2\sigma(I)]$	R1 = 0.0533 wR2 =	R1 = 0.0589
	0.1388	wR2 = 0.1338
R1: wR2 (Total)	R1 = 0.0783. WR2 =	$R = 0.0589$: $R^{-1} = 0.133$
,	0.1659	
S	1.074	1.201
Largest diff. peak	0.803 and -1.178	0.453 and -0.931
and hole		

Table	S2 .	Selected	angles	for	for	<i>ct</i> -[RuCl(CO)(dppb)(bipy)]PF ₆	and	CC-
[RuCl(C	CO)(dp	pb)(phen)]F	PF _{6.}					

ct-[RuCl(CO)(d	opb)(bipy)]PF ₆	cc-[RuCl(CO)(dppb)(phen)]PF ₆		
Angles [°]	Angles [°]		
C(1)-Ru-N(1)	89.11(12)	C(1)-Ru-N(1)	169.54(14)	
C(1)-Ru-N(2)	86.98(13)	C(1)-Ru-N(2)	91.79(14)	
N(1)-Ru-N(2)	77.11(12)	N(2)-Ru-N(1)	77.93(11)	
C(1)-Ru-P(1)	88.54(11)	C(1)-Ru-P(1)	94.87(12)	
N(1)-Ru-P(1)	105.90(8)	N(2)-Ru-P(1)	89.79(9)	
N(2)-Ru-P(1)	174.57(8)	N(1)-Ru-P(1)	87.14(8)	
C(1)-Ru-Cl	94.91(11)	C(1)-Ru-P(2)	89.32(12)	
N(1)-Ru-Cl	168.63(8)	N(2)-Ru-P(2)	170.33(9)	
N(2)-Ru-Cl	92.46(9)	N(1)-Ru-P(2)	100.48(8)	
P(1)-Ru-Cl	84.87(3)	P(1)-Ru-P(2)	99.68(3)	
C(1)-Ru-P(2)	173.00(12)	C(1)-Ru-Cl	92.28(12)	
N(1)-Ru-P(2)	92.54(7)	N(2)-Ru-Cl	83.27(9)	
N(2)-Ru-P(2)	86.76(8)	N(1)-Ru-Cl	84.64(8)	
P(1)-Ru-P(2)	97.53(3)	P(1)-Ru-Cl	170.19(3)	
Cl-Ru-P(2)	82.24(3)	P(2)-Ru-Cl	87.09(3)	
C(1)-Ru-P(2)	173.00(12)	C(1)-Ru-N(2)	91.79(14)	
N(1)-Ru-P(2)	92.54(7)	C(1)-Ru-N(1)	169.54(14)	

Table S3. Contributions, %, of the composing atoms in the frontier orbitals of the Rucomplexes ct-[RuCl(CO)(dppb)(bipy)]PF₆ (**1**), tc-[RuCl(CO)(dppb)(bipy)]PF₆ (**3**) and cc-[RuCl(CO)(dppb)(bipy)]PF₆ (**5**) calculated using the B3LYP/[Ru:SDD;C,H,P,N,Cl:6-311+G**] approach.

Species	номо	LUMO		
(3) opt.	(C+H) 87	(C=O) 27; (C+H) 56		
(5) opt.	(C+H) 93	(C=O) 11; (C+H) 82		
(1) opt.	Ru: 54; Cl: 34;	N: 20; (C+H) 77		
	(C+H) 10			
(1) X-ray*	Ru: 58; Cl: 33	N: 17; (C+H) 80		

**ct*-[RuCl(CO)(dppb)(bipy)]PF₆ complex calculated using X-ray coordinates.

Table S4. Natural Bonding Orbitals (NBO) charges on the Ru and Ru-bound atoms of the complexes tc-[RuCl(CO)(dppb)(bipy)]PF₆ (**3**), cc-[RuCl(CO)(dppb)(bipy)]PF₆ (**5**), and ct-[RuCl(CO)(dppb)(bipy)]PF₆ (**1**), calculated using the B3LYP/[Ru:SDD;C,H,P,N,Cl:6-311+G**] approach.

atoms	complex 3	complex 5	complex 1	complex 1
	(opt.)	(opt.)	(opt.)	(X-Ray)*
Ru	-1.38	-1.28	-0.66	-0.87
N1	-0.40	-0.69	-0.36	-0.36
N2	-0.35	-0.30	-0.37	-0.37
P1	2.79	1.01	1.20	1.30
P2	1.02	0.62	1.09	1.17
Cl	-0.27	-0.26	-0.40	-0.35
C(CO)	0.62	0.60	0.77	0.77
Ο	-0.50	-0.63	-0.44	-0.42

*ct-[RuCl(CO)(dppb)(bipy)]PF₆ complex calculated using X-ray coordinates.

Figure S1. (C) ¹³C{¹H} NMR spectrum of *ct*-[RuCl(CO)(dppb)(bipy)]PF₆ complex in DMSO- d_6 at 300 k (A) Expanded regions of 110 – 200 ppm, (B) 5 – 30 ppm at different times.

Figure S2. (C) ¹³C{¹H} NMR spectrum of *cc*-[RuCl(CO)(dppb)(bipy)]PF₆ isomer in DMSO d_6 at 300 K, (A) Expanded regions of 120 – 210 ppm and (B) 21 – 31 ppm at different times.

Figure S3. (C) ¹³C{¹H } NMR spectrum of *tc*-[RuCl(CO)(dppb)(bipy)]PF₆ complex in DMSO- d_6 at 300 K. (A) Expanded regions of 110 – 200 ppm and (B) 23 – 31 ppm at different times.

Figure S4. A) ${}^{31}P{}^{1}H{}$ NMR spectrum of solution after electrolysis of *ct*-[RuCl(CO)(dppb)(bipy)]PF₆ isomer in CH₃CN and B) cyclic voltammogram of the *ct*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆ in CH₃CN.

Figure S5. A) ${}^{31}P{}^{1}H{}$ spectrum of solution after electrolysis of *tc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆ carried out for 3 h; B) cyclic voltammogram of *tc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆, C) ${}^{31}P$ NMR spectra of solution after electrolysis of *cc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆ for 4 h and D) cyclic voltammogram of *cc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆. Conditions: Pt electrode *vs* Ag/AgCl, TBAP 0.1 mol L⁻¹ in CH₃CN.

Figure S6. ¹³C{¹H} NMR spectra of electrolysis products. A) *ct*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆, B) *tc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆ and C) *cc*-[RuCl(CH₃CN)(dppb)(bipy)]PF₆.