Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary information for:

Synthesis, X-ray Structure and Electrochemical Properties of Hybrid Binuclear Metallophthalocyaninate-Capped tris-Pyridineoximates

Semyon V. Dudkin^a, Alexander S. Belov^a, Yulia V. Nelyubina^a, Anastasia V. Savchuk^b, Alexander A. Pavlov^a, Valentin V. Novikov^a, and Yan Z. Voloshin^{a,c}

^aNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991, Moscow, Russia

^bVernadskii Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 03680 Kiev, Ukraine

^cGubkin Russian State University of Oil and Gas, 119991 Moscow, Russia

Fig. S1. ¹H NMR spectrum of the solution of the complex $[Fe(AcPyOx)_3(Sb(C_2H_5)_3)](ClO_4)$ in CDCl₃.

Fig. S2. ¹³C NMR spectrum of the solution of the complex $[Fe(AcPyOx)_3(Sb(C_2H_5)_3)](ClO_4)$ in CDCl₃.

Fig. S3. ¹H NMR spectrum of the solution of the complex $[Ni(AcPyOx)_3(Sb(C_2H_5)_3)](ClO_4)$ in CD_2Cl_2 .

Fig. S4. ¹³C NMR spectrum of the solution of the complex $[Ni(AcPyOx)_3(Sb(C_2H_5)_3)](ClO_4)$ in CD_2Cl_2 .

Fig. S5. ¹H NMR spectrum of the solution of the complex $[Fe(AcPyOx)_3(HfPc)](ClO_4)$ in CD_2Cl_2 .

Fig. S6. ¹³C NMR spectrum of the solution of the complex $[Fe(AcPyOx)_3(HfPc)](ClO_4)$ in CD_2Cl_2 .

Fig. S7. ¹H NMR spectrum of the solution of the complex $[Fe(AcPyOx)_3(ZrPc)](ClO_4)$ in CD_2Cl_2 .

Fig. S8. ¹³C NMR spectrum of the solution of the complex $[Fe(AcPyOx)_3(ZrPc)](ClO_4)$ in CD_2Cl_2 .

Fig. S9. ¹H NMR spectrum of the solution of the complex $[Ni(AcPyOx)_3(HfPc)](ClO_4)$ in CD_2Cl_2 .

Fig. S10. ¹H NMR spectrum of the solution of the complex $[Ni(AcPyOx)_3(ZrPc)](ClO_4)$ in CD_2Cl_2 .

Fig. S11. UV-vis spectrum of the dichloromethane solution of the complex $[Fe(AcPyOx)_3(Sb(C_2H_5)_3)](ClO_4)$ (in black) and its deconvoluted Gaussian components (in color).

Table S1. Gaussian Fit Parameters for the [Fe(AcPyOx)₃(Sb(C₂H₅)₃)](ClO₄)

band	Ε	fwhm	$f_{ m osc}{}^a$
	(cm^{-1})	(cm^{-1})	
1	17928	1919	0.08598
2	19764	1869	0.05733
3	21288	5291	0.08604
4	25178	2326	0.02694
5	26680	1387	0.00306
6	32272	6951	0.55169
7	32810	2015	0.08729
8	37488	2795	0.02447
9	42264	9309	1.36381

Fig. S12. UV-vis spectrum of the dichloromethane solution of the complex $[Ni(AcPyOx)_3(Sb(C_2H_5)_3)](ClO_4)$ (in black) and its deconvoluted Gaussian components (in color).

Table S2. Gaussian Fit Parameters for the [Ni(AcPyOx)₃(Sb(C₂H₅)₃)](ClO₄)

band	Ε	fwhm	$f_{ m osc}{}^a$
	(cm^{-1})	(cm^{-1})	
1	25523	7311	0.01136
2	28742	1385	0.03976
3	30031	2558	0.16388
4	32090	2801	0.22207
5	37268	6741	0.87280
6	37996	1784	0.01539

Fig. S13. UV-vis spectra of the solution of the parent phthalocyaninate **Zr**(**Cl**₂)**Pc** in DMSO (in black) and the dichloromethane solutions of its derivatives [**Fe**(**AcPyOx**)₃(**ZrPc**)](**ClO**₄) (in blue) and [**Ni**(**AcPyOx**)₃(**ZrPc**)](**ClO**₄) (in green).

Fig. S14. UV-vis spectrum of the dichloromethane solution of the complex [**Fe**(**AcPyOx**)₃(**HfPc**)](**ClO**₄) (in black) and its deconvoluted Gaussian components (in color).

band	$E(\mathrm{cm}^{-1})$	fwhm (cm ⁻¹)	$f_{ m osc}{}^a$
1	14512	412	0.37553
2	15173	687	0.0866
3	16077	609	0.08266
4	16787	426	0.00893
5	17293	845	0.01674
6	18565	1471	0.07600
7	19876	2424	0.09839
8	22706	2385	0.03015
9	25383	2019	0.02051
10	28449	2979	0.47499
11	30115	1230	0.03826
12	31403	6665	1.36387

Table S3. Gaussian Fit Parameters for the [Fe(AcPyOx)₃(HfPc)](ClO₄)

Fig. S15. UV-vis spectrum of the dichloromethane solution of the complex [**Fe**(**AcPyOx**)₃(**ZrPc**)](**ClO**₄) (in black) and its deconvoluted Gaussian components (in color).

band	$E(\mathrm{cm}^{-1})$	fwhm (cm ⁻¹)	$f_{ m osc}{}^a$
1	14503	380	0.37131
2	14687	866	0.14019
3	15238	412	0.03439
4	15985	850	0.10347
5	16140	282	0.01678
6	16834	475	0.01047
7	17336	714	0.01417
8	18587	1605	0.11840
9	19964	1700	0.06018
10	27975	1367	0.05791
11	29433	4574	1.54125
12	32486	1960	0.15706

Table S4. Gaussian Fit Parameters for the [Fe(AcPyOx)₃(ZrPc)](ClO₄)

Fig. S16. UV-vis spectrum of the dichloromethane solution of the complex [**Ni(AcPyOx)₃(HfPc)**](**ClO₄**) (in black) and its deconvoluted Gaussian components (in color).

band	$E(\mathrm{cm}^{-1})$	fwhm (cm ⁻¹)	$f_{ m osc}{}^a$
1	14543	385	
2	14822	1028	
3	15286	410	
4	15737	389	
5	16120	532	
6	16190	233	
7	16366	2341	
8	16836	580	
9	17490	470	
10	28310	2435	
11	29953	1421	
12	30475	5563	

Table S5. Gaussian Fit Parameters for the [Ni(AcPyOx)₃(HfPc)](ClO₄)

Fig. S17. UV-vis spectrum of the dichloromethane solution of the complex [**Ni**(**AcPyOx**)₃(**ZrPc**)](**ClO**₄) (in black) and its deconvoluted Gaussian components (in color).

band	$E(\mathrm{cm}^{-1})$	fwhm (cm ⁻¹)	$f_{ m osc}{}^a$
1	14532	387	0.35864
2	14753	983	0.13228
3	16030	811	0.09533
4	16172	276	0.01530
5	16857	471	0.00966
6	17375	753	0.01519
7	26463	3269	0.09239
8	28184	2323	0.31683
9	29835	1793	0.16027
10	36838	1024	0.02295

Table S6. Gaussian Fit Parameters for the [Ni(AcPyOx)₃(ZrPc)](ClO₄)

Table	S7 .	Details	of	data	collection	and	refinement	for	the	complexes	[Fe(AcPyOx) ₃ (HfPc)](ClO ₄),	[Fe(AcPyOx) ₃ (ZrPc)](ClO ₄),
[Ni(Ac	PyOx) ₃ (HfPc)](Cl(D4), [N	(i(AcPyOx)	s(ZrP	c)](ClO ₄) and	1 [Ni (AcPy	vOx) ₃ (Sb(C ₂ I	H ₅) ₃)](ClO ₄).	

Complex	[Fe(AcPyOx) ₃ (HfPc)] (ClO ₄)	[Fe(AcPyOx) ₃ (ZrPc)] (ClO ₄)	[Ni(AcPyOx) ₃ (HfPc)] (ClO ₄)	[Ni(AcPyOx) ₃ (ZrPc)] (ClO ₄)	[Ni(AcPyOx) ₃ (SbEt ₃)]ClO ₄
Empirical formula	C ₅₃ H ₃₇ ClFeHfN ₁₄ O ₇	C ₅₃ H ₃₇ ClFeZrN ₁₄ O ₇	$C_{63}H_{48}Cl_3NiHfN_{14}O_7$	C ₅₃ H ₃₇ ClNiZrN ₁₄ O ₇	C27H36ClN6NiO7Sb
Formula weight	1251.75	1164.48	1456.70	1167.34	772.53
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic	Trigonal
Space group	P-1	$P2_{1}/n$	$P2_{1}/n$	P-1	<i>R-3</i>
<i>a</i> (Å)	12.1688(19)	12.7726(16)	16.714(2)	12.3075(16)	12.9295(6)
<i>b</i> (Å)	13.742(2)	12.7063(16)	19.114(2)	13.6996(18)	12.9295(6)
<i>c</i> (Å)	15.640(2)	29.868(4)	19.356(3)	16.041(2)	31.955(3)
$\alpha(\oplus)$	79.198(3)	90	90	76.481(3)	90
β(⊕)	81.175(3)	100.255(2)	108.853(3)	79.763(3)	90
γ(⊕)	89.104(4)	90	90	87.948(3)	120
$V(\text{\AA}^3)$	2538.4(7)	4770.0(10)	5852.1(13)	2587.8(6)	4626.3(6)
D_{calc} (g cm ⁻³)	1.638	1.622	1.653	1.498	1.664
Linear absorption, μ (cm ⁻³)	24.51	6.52	23.01	6.84	16.27
F(000)	1248	2368	2924	1188	2352
$2\theta_{max}, \circ$	52	52	58	54	58
Reflections measured	33117	75600	68743	45611	19347
Independent reflections	9953	9372	16173	11305	2743

R _{int}	0.0795	0.1888	0.0788	0.0969	0.0518
Observed refls $(I > 2\sigma(I))$	7030	6010	12473	7901	2327
Parameters	698	697	901	697	145
wR ₂	0.1807	0.2488	0.1013	0.1487	0.1279
<i>R</i> ₁	0.0710	0.1076	0.0486	0.0583	0.0377
Goodness-of-fit	1.002	1.558	1.067	1.019	1.015
Largest diff. peak/hole	2.945 / -0.542	3.937 / -1.379	1.340 / -1.522	1.650 / -1.066	1.764 / -1.246
(e Å ⁻³)					

Fig. S18 General view of the complex [**Ni**(**AcPyOx**)₃(**SbEt**₃)]**ClO**₄ with atoms shown as thermal ellipsoids at p=30%; hydrogen atoms and the perchlorate anion are omitted for clarity.

Table S8 Main geometrical parameters of [Ni(AcPyOx)₃(SbEt₃)]ClO₄.^a

Parameter	Value	Parameter	Value
M–N1 (Å)	2.025(2)	N-O (Å)	1.353(3)
M–N2 (Å)	2.106(2)	Sb–O (Å)	2.146(3)
$arphi\left(^{\circ} ight)$	35.8	C=N (Å)	1.288(4)
α(°)	38.8	C–C (Å)	1.475(4)
h (Å)	2.37	N=C-C=N (°)	8.0(3)

^{*a*} Only third of the complex is symmetry-independent in the crystal.

Fig. S19 Cyclic (in blue) and differential pulse (in red) voltammograms for a 0.1 mM dichloromethane solution of the complex [**Fe**(AcPyOx)₃(HfPc)](ClO₄).