Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

LiSr₃Be₃B₃O₉F₄: A New Ultraviolet Nonlinear Optical Crystal for

Fourth-harmonic Generation of Nd:YAG Lasers

Shu Guo,^{a,b} Lijuan Liu,^{*,a} Mingjun Xia,^a Fei liang,^{a,b} Zhi Fang,^{a,b} Ruofei Wu,^{a,b} Xiaoyang Wang,^a Zheshuai Lin^a and Chuangtian Chen^a

^aBeijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

CONTENTS

Figure S1. Powder XRD patterns of $LiSr_3Be_3B_3O_9F_4$ before and after melting	S2
Figure S2. Calculated electronic properties in LiSr ₃ Be ₃ B ₃ O ₉ F ₄	S 3
Table S1. Crystal data and structure refinement for $LiSr_3Be_3B_3O_9F_4$	S4
Table S2. Selected bond lengths (Å) and bond angles for $LiSr_3Be_3B_3O_9F_4$	S 5
Table S3. Atomic coordinates and equivalent isotropic displacement parameters for $LiSr_3Be_3B_3O_9F_4$	S 6

Figure S2 Calculated electronic properties in LiSr₃Be₃B₃O₉F₄.

Formula	$LiSr_3Be_3B_3O_9F_4$
formula mass(amu)	549.26
crystal system	trigonal
space group	R3m
<i>a</i> (Å)	10.3062(15)
b(Å)	10.3062(15)
<i>c</i> (Å)	8.3458(17)
α	90
β	90
γ	120
<i>V</i> (ų)	767.7(2)
Ζ	3
<i>Т</i> (К)	153.15
ho(calcd)(g/cm ³)	3.564
λ (Å)	0.71073
F(000)	756.0
θ(deg)	3.3398-27.4855
Cryst size (mm ³)	0.26×0.24×0.24
μ(mm⁻¹)	15.683
R(F) ^a	0.0278(232)
$R_{\rm W}(F_{\rm o}^2)^{b}$	0.0651(237)

Table S1. Crystal data and structure refinement for LiSr₃Be₃B₃O₉F₄.

 ${}^{a}R(F) = \sum | | F_{o}| - | F_{c}| | / \sum | F_{o}| \text{ for } F_{o}^{2} > 2\sigma(F_{o}^{2}).$

 ${}^{b}R_{w}(F_{o}{}^{2}) = \{ (\sum [w(F_{o}{}^{2}-F_{c}{}^{2})^{2}] / \sum wF_{o}{}^{4} \}^{1/2} \text{ for all data.}$

 $w^{-1} = \sigma^2(F_o^2) + (zP)^2$, where $P = (_{Max}(F_o^2, 0) + 2F_c^2)/3$.

Sr1–F2	2.414(7)	Be1-F1	1.546(12)
Sr1–F2	2.451(4)	O2-B1-O2	124.2(9)
Sr1-02	2.615(4)	02–B1–O1	117.8(4)
Sr1-02	2.951(5)	02-Be1-02	108.5(8)
Sr1-01	2.700(5)	02–Be1–O1	110.9(6)
B1–O1	1.401(12)	O2–Be1–F1	108.7(6)
B1–O2	1.361(6)	O1-Be1-F1	108.9(9)
Be1–O1	1.533(14)	F2-Li1- F2	86.5(16)
Be1-O2	1.529(8)	F2-Li1-F1	127.7(11)
Li1-F1	2.51(5)	Be1-F1-Be1	118.9(3)
Li1-F2	2.20(3)	B1-O2-Be1	122.4(7)

Table S2. Selected bond lengths (Å) and bond angles for $LiSr_3Be_3B_3O_9F_4$.

Atom	Wyckoff	x/a	y/b	z/c	Ueq [Ų]
Sr1	9b	0.06773(8)	0.53387(4)	1.0020(2)	0.0067(3)
01	9b	0.2283(4)	0.7717(4)	0.8089(9)	0.0092(13)
02	18c	0.2359(5)	0.9975(5)	0.8805(5)	0.0091(11)
F1	3a	1/3	2/3	0.6098(15)	0.020(2)
F2	9b	-0.1383(8)	0.4308(4)	0.8146(9)	0.0179(13)
B1	9b	0.1529(6)	0.8471(6)	0.8555(13)	0.005(2)
Be1	9b	0.2472(7)	0.7528(7)	0.6298(15)	0.003(2)
Li1	3a	-1/3	1/3	0.979(6)	0.038(10)

Table S3. Atomic coordinates and equivalent isotropic displacement parameters for ${\sf LiSr_3Be_3B_3O_9F_4}.$