Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Information

Photoluminescence and electroluminescence of an iridium(III) complex with 2',6'-bis(trifluoromethyl)-2,4'-bipyridine and 2-(5-phenyl-1,3,4-thiadiazol-2-yl)phenol ligands

Yi-Ming Jing ^a, You-Xuan Zheng ^{a,b*}

^a State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China, e-mail: yxzheng@nju.edu.cn

^b MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200, P. R. China

	Ir(BTBP) ₂ TDZ		
Formula	$C_{38}H_{19}F_{12}IrN_6OS$		
Formula weight	1027.85		
T (K)	296(2)		
Wavelength (Å)	0.71073		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
<i>a</i> (Å)	10.5833(4)		
<i>b</i> (Å)	24.6297(8)		
<i>c</i> (Å)	15.5661(5)		
α (deg)	90.00		
β (deg)	102.3490(10)		
γ (deg)	90.00		
$V(Å^3)$	3963.6(2)		
Ζ	4		
ρ_{calcd} (g/cm ³)	1.722		
μ (Mo K α) (mm ⁻¹)	3.517		
F (000)	1992		
Range of transm factors (deg)	1.574-25.009		
Reflns collected	22135		
Unique(R _{int})	6990(0.0304)		
$R_I^a, w R_2^b [I > 2s(I)]$	0.0286, 0.0686		
$R_{1^{a}}, wR_{2^{b}}$ (all data)	0.0358, 0.0707		
GOF on F^2	1.057		
CCDC number	1524694		

Table S1. Parameters associated with the single crystal diffraction data collection for Ir(BTBP)₂TDZ.

 $R_{I}^{a} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma F_{o}|. \ wR_{2}^{b} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})]^{1/2}$

GOF = $[(\Sigma w | F_o| - |F_c|)^2 / (N_{obs} - N_{param})]^{1/2}$.

Selected Bond	Bond Length (Å)	Selected Angle	Bond Angle (°)
Ir(1)-C(1)	2.022(4)	C(22)-Ir(1)-C(1)	99.02 (16)
Ir(1)-C(22)	2.020(4)	C(22)-Ir(1)-N(3)	80.46 (17)
Ir(1)-N(3)	2.032(3)	C(1)-Ir(1)-N(3)	101.88 (15)
Ir(1)-N(2)	2.049(3)	C(22)-Ir(1)-N(2)	105.59 (16)
Ir(1)-N(1)	2.125(3)	C(1)-Ir(1)-N(2)	80.94 (14)
Ir(1)-O(1)	2.110(3)	N(3)-Ir(1)-N(2)	172.96 (13)
		C(22)-Ir(1)-N(1)	90.94 (15)
		C(1)-Ir(1)-N(1)	168.81 (14)
		N(3)-Ir(1)-N(1)	84.70 (13)
		N(2)-Ir(1)-N(1)	91.53 (12)
		C(22)-Ir(1)-O(1)	171.25 (14)
		C(1)-Ir(1)-O(1)	85.61 (14)
		N(3)-Ir(1)-O(1)	91.35 (13)
		N(2)-Ir(1)-O(1)	82.40 (12)
		N(1)-Ir(1)-O(1)	85.20 (12)

Table S2. The table of selected bond lengths and angles of Ir(BTBP)₂TDZ.

Table S3. Electrochemical data of Ir(BTBP)₂TDZ.

Complex	$E_{\mathrm{ox}}\left(\mathrm{V}\right)^{\mathrm{a}}$	$E_{\rm red}$ (V)	HOMO (eV) b)	LUMO (eV)	$E_{\rm g}({\rm eV})$
Ir(BTBP) ₂ TDZ	0.93	-1.42	-5.58	-3.04	2.54

^{a)} Oxidation potential measured in solution at 0.05 mV/s.

^{b)} The HOMO energy levels were calculated from the equation: HOMO (eV) = $E_{ox} - E_{Fe}^{+}/_{Fe} + 4.8$.

Table S4. Percentage distributions of HOMO and LUMO in Ir(BTBP)₂TDZ.

Complex	Orbital Energy/eV (Calculated)	$E_{\rm gap}/{\rm eV}$	Composition (%)			
		(Calculated)	(Calculated)	Ir	BTBP	TDZ
Ir(BTBP)2TDZ	НОМО	-5.493	3.301	14.73	5.31	79.96
	LUMO	-2.192		1.39	41.77	56.84